J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (10): 1765-1772.DOI: 10.1016/j.jmst.2018.02.011
• Orginal Article • Previous Articles Next Articles
Ling Wangac, Yiquan Zhaob, Jing Zhangd, Ru Mab, Yandong Liua(), Yinong Wangb(
), Qun Zhange, Weigang Lie, Yuan Zhange
Received:
2017-06-08
Revised:
2017-07-12
Accepted:
2017-07-27
Online:
2018-10-05
Published:
2018-11-01
Ling Wang, Yiquan Zhao, Jing Zhang, Ru Ma, Yandong Liu, Yinong Wang, Qun Zhang, Weigang Li, Yuan Zhang. Quantitative analysis on friction stress of hot-extruded AZ31 magnesium alloy at room temperature[J]. J. Mater. Sci. Technol., 2018, 34(10): 1765-1772.
Processing condition | Grain size (μm) | (MPa)σ0 | k (MPa μm-1/2) | Refs |
---|---|---|---|---|
FSP | 1.4-10.2 | 145 | 157 | [ |
FSP | 1.4-10.2 | 103 | 236 | [ |
FSP | 2.6-6.1 | 10 | 160 | [ |
ECAP | 4.5-32 | 30 | 170 | [ |
ECAP | 2.5-6.3 | 85 | 205 | [ |
Extrusion | 2.5-8.0 | 80 | 303 | [ |
Rolling | 16-35 | 70 | 348 | [ |
Rolling | 13-140 | 115 | 272 | [ |
Rolling | 13-140 | 88 | 281 | [ |
Table 1 H-P parameters for AZ31 magnesium alloy at room-temperature.
Processing condition | Grain size (μm) | (MPa)σ0 | k (MPa μm-1/2) | Refs |
---|---|---|---|---|
FSP | 1.4-10.2 | 145 | 157 | [ |
FSP | 1.4-10.2 | 103 | 236 | [ |
FSP | 2.6-6.1 | 10 | 160 | [ |
ECAP | 4.5-32 | 30 | 170 | [ |
ECAP | 2.5-6.3 | 85 | 205 | [ |
Extrusion | 2.5-8.0 | 80 | 303 | [ |
Rolling | 16-35 | 70 | 348 | [ |
Rolling | 13-140 | 115 | 272 | [ |
Rolling | 13-140 | 88 | 281 | [ |
Fig. 1. Optical microstructures of as-extruded AZ31 after different annealing conditions: (a) at 350 °C for 15 min, (b)-(e) at 450 °C for 1 h, 5 h, 15 h and 25 h respectively.
Annealing conditions | Grain size (μm) |
---|---|
at 350 °C for 15 min | 4.5 |
at 450 °C for 1 h | 9.8 |
at 450 °C for 5 h | 16.1 |
at 450 °C for 15 h | 18.5 |
at 450 °C for 25 h | 22.3 |
Table 2 Summary of grain size in AZ31 samples.
Annealing conditions | Grain size (μm) |
---|---|
at 350 °C for 15 min | 4.5 |
at 450 °C for 1 h | 9.8 |
at 450 °C for 5 h | 16.1 |
at 450 °C for 15 h | 18.5 |
at 450 °C for 25 h | 22.3 |
Fig. 2. Microstructures obtained using EBSD for samples underwent (a) initial annealing (at 350 °C for 15 min) and (b) final annealing (at 450 °C for 25 h).
Fig. 3. {0001} Pole figures for the cross-sectional in the extruding direction of the (a) initial annealed sample(at 350 °C for 15 min) and (b) final annealed sample(at 450 °C for 25 h).
Fig. 4. Typical engineering compressive and tensile stress-strain curves of the initial annealed AZ31 specimen (annealed at 350 °C for 15 min) loaded parallel to the extrusion direction.
Fig. 5. Optical microstructures of the samples with different grain sizes: (a) 4.5 μm, (b) 9.8 μm, (c) 16.1 μm, (d) 18.5 μm and (e) 22.3 μm, compressed to strain of ~2%, indicating that twinning was the dominant deformation mode in the process of yielding.
Fig. 6. Optical microstructures of the samples with different grain sizes: (a) 4.5 μm, (b) 9.8 μm, (c)16.1 μm, (d) 18.5 μm and (e) 22.3 μm, at a strain of ~2%, indicating that dislocation slip was the dominant deformation mode in the process of yielding.
Tension | Compression | ||||||
---|---|---|---|---|---|---|---|
Grain size, d (μm) | σTYS (MPa) | σUTS (MPa) | El (%) | σCYS (MPa) | σUCS (MPa) | El (%) | Yield asymmetry |
4.5 | 181 | 256 | 23 | 171 | 431 | 16 | 1.06 |
9.8 | 147 | 211 | 21 | 119 | 435 | 15 | 1.24 |
16.1 | 139 | 214 | 20 | 101 | 422 | 13 | 1.38 |
18.5 | 133 | 209 | 18 | 93 | 404 | 13 | 1.43 |
22.3 | 127 | 171 | 16 | 84 | 384 | 12 | 1.51 |
Table 3 Summary of mechanical properties in AZ31 samples.
Tension | Compression | ||||||
---|---|---|---|---|---|---|---|
Grain size, d (μm) | σTYS (MPa) | σUTS (MPa) | El (%) | σCYS (MPa) | σUCS (MPa) | El (%) | Yield asymmetry |
4.5 | 181 | 256 | 23 | 171 | 431 | 16 | 1.06 |
9.8 | 147 | 211 | 21 | 119 | 435 | 15 | 1.24 |
16.1 | 139 | 214 | 20 | 101 | 422 | 13 | 1.38 |
18.5 | 133 | 209 | 18 | 93 | 404 | 13 | 1.43 |
22.3 | 127 | 171 | 16 | 84 | 384 | 12 | 1.51 |
Tension | Compression | ||||
---|---|---|---|---|---|
Range of basal pole | Volume fraction | Prismatic slip | Basal slip | Twinning | Basal slip |
0°-90° | 100% | 0.398 | 0.277 | 0.413 | 0.277 |
75°-90° | 38% | 0.394 | 0.118 | 0.419 | 0.118 |
60°-75° | 41% | 0.456 | 0.336 | 0.437 | 0.336 |
45°-60° | 18% | 0.410 | 0.446 | 0.357 | 0.446 |
30°-45° | 3% | 0.382 | 0.466 | 0.345 | 0.466 |
0°-30° | 0 | - | - | - | - |
Table 4 Summary of Schmid factors for different deformation systems obtained from EBSD data for tension and compression.
Tension | Compression | ||||
---|---|---|---|---|---|
Range of basal pole | Volume fraction | Prismatic slip | Basal slip | Twinning | Basal slip |
0°-90° | 100% | 0.398 | 0.277 | 0.413 | 0.277 |
75°-90° | 38% | 0.394 | 0.118 | 0.419 | 0.118 |
60°-75° | 41% | 0.456 | 0.336 | 0.437 | 0.336 |
45°-60° | 18% | 0.410 | 0.446 | 0.357 | 0.446 |
30°-45° | 3% | 0.382 | 0.466 | 0.345 | 0.466 |
0°-30° | 0 | - | - | - | - |
|
[1] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[2] | Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N.T suji, G.W. Qin. Two-stage Hall-Petch relationship in Cu with recrystallized structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 31-35. |
[3] | A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion [J]. J. Mater. Sci. Technol., 2020, 52(0): 218-225. |
[4] | H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu. The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires [J]. J. Mater. Sci. Technol., 2019, 35(1): 76-83. |
[5] | Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites [J]. J. Mater. Sci. Technol., 2018, 34(9): 1580-1591. |
[6] | Huihui Yu, Yunchang Xin, Maoyin Wang, Qing Liu. Hall-Petch relationship in Mg alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34(2): 248-256. |
[7] | Xuan Liu, Zhiqiang Zhang, Wenyi Hu, Qichi Le, Lei Bao, Jianzhong Cui. Effects of Extrusion Speed on the Microstructure and Mechanical Properties of Mg-9Gd-3Y-1.5Zn-0.8Zr alloy [J]. J. Mater. Sci. Technol., 2016, 32(4): 313-319. |
[8] | Wang Zhiguo,Li Chuanpeng,Wang Huiyuan,Zhu Xian,Wu Min,Li Jiehua,Jiang Qichuan. Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques [J]. J. Mater. Sci. Technol., 2016, 32(10): 1008-1012. |
[9] | Yuna Wu, Hengcheng Liao, Jian Yang, Kexin Zhou. Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion [J]. J. Mater. Sci. Technol., 2014, 30(12): 1271-1277. |
[10] | Morteza Alizadeh, Mostafa Alizadeh, Rasool Amini. Structural and Mechanical Properties of Al/B4C Composites Fabricated by Wet Attrition Milling and Hot Extrusion [J]. J. Mater. Sci. Technol., 2013, 29(8): 725-730. |
[11] | Chengwei Liao, Jianchun Chen, Yang Li, Rui Tu, Chunxu Pan. Morphologies of Al4Sr Intermetallic Phase and Its Modification Property upon A356 Alloys [J]. J Mater Sci Technol, 2012, 28(6): 524-530. |
[12] | Peng Jin, Bolu Xiao, Quanzhao Wang, Zongyi Ma, Yue Liu, Shu Li. Efect of Hot Extrusion on Interfacial Microstructure and Tensile Properties of SiCp/2009Al Composites Fabricated at Different Hot Pressing Temperatures [J]. J Mater Sci Technol, 2011, 27(6): 518-524. |
[13] | A. Alizadeh, E. Taheri-Nassaj, M. Hajizamani. Hot Extrusion Process Effect on Mechanical Behavior of Stir Cast Al Based Composites Reinforced with Mechanically Milled B4C Nanoparticles [J]. J Mater Sci Technol, 2011, 27(12): 1113-1119. |
[14] | Yeon-Wook Kim. Microstructures and Mechanical Properties of Rapidly Solidified Mg-Al-Zn-MM Alloys [J]. J Mater Sci Technol, 2008, 24(01): 89-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||