Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 135-139    DOI: 10.1016/j.jmst.2017.11.001
Orginal Article Current Issue | Archive | Adv Search |
Improving weld formability by a novel dual-rotation bobbin tool friction stir welding
F.F. Wangabc, W.Y. Lia*(), J. Shenb(), Q. Wena, J.F. dos Santosb
a State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi’an 710072, China;
b Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, Geesthacht 21502, Germany
c China Academy of Launch Vehicle Technology, Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm thick aluminum-lithium alloy sheets. The metallographic analysis and torque measurement were carried out to characterize the weld formability. Experimental results show that compared to conventional bobbin tool friction stir welding, the DBT-FSW has an excellent process stability, and can produce the defect-free joints in a wider range of welding parameters. These can be attributed to the significant improvement of material flow caused by the formation of a staggered layer structure and the unbalanced force between the US and LS during the DBT-FSW process.

Key words:  Bobbin tool friction stir welding      Dual rotation      Material flow      Microstructure      Microhardness     
Received:  05 March 2017     
Corresponding Authors:  Li W.Y.     E-mail:;

Cite this article: 

F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol., 2018, 34(1): 135-139.

URL:     OR

Fig. 1.  (a) Details of the welding tool and (b) schematic of DBT-FSW.
Fig. 2.  OM images of: (a) BT-FSW joint; (b) DBT-FSW joint; (c) typical void defect exhibited in BT-FSW; and typical microstructure on the AS of (d) DBT-FSW and (e) BT-FSW.
Fig. 3.  Welding parameters windows of (a) BT-FSW and (b) DBT-FSW.
Fig. 4.  (a) Layer structure at the run-out of the DBT-FSW joint; (b) measured torque of the welding tool; and illustration for material flow in (c) BT-FSW and (d) DBT-FSW.
Fig. 5.  Microstructures in the SZ along the weld center line of DBT-FSW joint: (a) 0.2 mm; (b) 1.35 mm; (c) 1.81 mm; (d) grain size and fraction of HAGB.
Fig. 6.  Microhardness distribution on the cross-section of typical DBT-FSW joint.
[1] X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andr?, W.M. Gan, M. Hofmannd, Z.Y. Ma, ActaMater. 87(2015) 161-173.
[2] R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, J. Mater. Sci.Technol. 32(2016)76-88.
[3] J.Q. Li, H.J. Liu, J. Mater. Sci.Technol. 31(2015) 375-383.
[4] L. Wan, Y.X. Huang, W.Q. Guo, S.X. Lv, J.C. Feng, J. Mater. Sci.Technol. 30(2014) 1243-1250.
[5] G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang, J. Mater. Sci.Technol. 32(2016) 326-333.
[6] H.J. Liu, Y.Y. Hu, Y.Q. Zhao, Mater. Lett. 158(2015) 136-139.
[7] D.R. Ni, J.J. Wang, Z.Y. Ma, J. Mater. Sci.Technol. 32(2016) 162-166.
[8] Y.M. Yue, Z.W. Li, S.D. Ji, Y.X. Huang, Z.L. Zhou, J. Mater. Sci.Technol. 32(2016)671-675.
[9] W.M. Thomas, C.S. Wiesner, D.J. Marks, D.G. Staines, Sci. Technol. Weld. Join.14(2009) 247-253.
[10] J. Shen, F. Wang, U.F.H. Suhuddin, S. Hu, W. Li, J.F. dos Santos, Metall. Mater.Trans. A 46 (2015) 2809-2813.
[11] P.L. Threadgill, M.M.Z.Ahmed, J.P. Martin, J.G. Perrett, B.P. Wynne, Mater. Sci.Forum 638-642(2010) 1179-1184.
[12] M.K. Sued, D. Pons, J. Lavroff, E.H. Wong, Mater. Des. 54(2014) 632-643.
[13] H.J. Liu, J.C. Hou, H. Guo, Mater. Des. 50(2013) 872-878.
[14] L. Wan, Y. Huang, Y. Wang, S. Lv, J. Feng, Mater. Sci. Technol. 31(2015)1433-1442.
[15] W.Y. Li, T. Fu, L. Hütsch, J. Hilgert, F.F. Wang, J.F. dos Santos, N.Huber, Mater.Des. 64(2014) 714-720.
[16] R. Nandan, T. Debroy, H. Bhadeshia, Prog. Mater. Sci. 53(2008) 980-1023.
[17] A.P. Reynolds, Scr. Mater. 58(2008) 338-342.
[18] W.M. Thomas, I.M. Norris, D.G. Staines, P.J. Clarke, N.L. Horrex, The 1stInternational Conference ‘Joining of Aluminium Structures’, Moscow, Russian,December 3-5, 2007.
[19] J.Q. Li, H.J. Liu, Mater. Des. 45(2013) 148-154.
[20] F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, J.F. dos Santos, Mater.Des. 86(2015)933-940.
[21] H.N.B.Schmidt, T.L. Dickerson, J.H. Hattel, Acta Mater. 54(2006) 1199-1209.
[22] G.R. Cui, Z.Y. Ma, S.X. Li, Acta Mater. 57(2009) 5718-5729.
[23] Z.W. Chen, T. Pasang, Y. Qi, Mater. Sci. Eng. A 474 (2008) 312-316.
[24] J.W. Qian, J.L. Li, J.T. Xiong, F.S. Zhang, W.Y. Li, X. Lin, Sci. Technol. Weld. Join.17(2012) 338-341.
[25] T.L. Jolu, T.F. Morgeneyer, A.F.Gourgues-Lorenzon, Sci. Technol. Weld. Join. 15(2010) 694-698.
[26] F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, J.F.J. dos Santos, Sci.Technol.Weld. Join. 21(2016) 479-483.
[1] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[2] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[3] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[4] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[5] Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire[J]. 材料科学与技术, 2020, 45(0): 44-48.
[6] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[7] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[8] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[9] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[10] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[11] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[12] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[13] Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting[J]. 材料科学与技术, 2020, 42(0): 1-9.
[14] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[15] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.