Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 173-184    DOI: 10.1016/j.jmst.2017.05.015
Orginal Article Current Issue | Archive | Adv Search |
Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate
Weifeng Xua*(), Yuxuan Luoa, Wei Zhanga, Mingwang Fub
a State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
b Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process. The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.

Key words:  Aluminum alloy      Friction stir welding      Bobbin tool      Temperature distribution      Microstructure      Mechanical properties     
Received:  20 February 2017     
Corresponding Authors:  Xu Weifeng     E-mail:

Cite this article: 

Weifeng Xu, Yuxuan Luo, Wei Zhang, Mingwang Fu. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. J. Mater. Sci. Technol., 2018, 34(1): 173-184.

URL:     OR

Chemical compositions (wt%)
Al Zn Mg Cu Fe Si Zr
Bal. 7.0-8.0 1.2-1.8 1.3-2.0 0.08 0.06 0.08-0.15
Table 1  Chemical compositions of 7085-T7452 aluminum alloys.
Fig. 1.  Tools of single side (a), bobbin tool (b) during FSW process.
Welding technology Rotational speed (rpm) Welding speed (mm/min)
SS-FSW 300 60
600 60
BB-FSW 150 150
200 150
Table 2  Parameters for SS-FSW and BB-FSW.
Fig. 2.  Arrangement of blind holes for temperature measurement, (a) SS-FSW, (b) BB-FSW.
Fig. 3.  Temperature curves at different positions of SS-FSW (a) and BB-FSW (b) joints under different parameters.
Fig. 4.  Peak temperature of different thermocouple points at SS-FSW and BB-FSW joints.
Fig. 5.  Macrographs of FSW welds on cross section at different process conditions (a) and (b) SS-FSW, (c) and (d) BB-FSW.
Fig. 6.  Grain morphologies of BM (a), WNZ (b), TMAZ in the AS (d) and HAZ (f) of SS-FSW, WNZ (c), TMAZ in the AS (e) and HAZ (g) of BB-FSW.
Fig. 7.  Grains characteristics of the upper, middle and lower layers of WNZs along the thickness direction of (a-c) SS-FSW and (d-f) BB-FSW joints.
Fig. 8.  Grain sizes in WNZ along the thickness direction under different welding conditions.
Fig. 9.  Maps of microhardness distribution along the transverse cross-section of (a) BM and (b-e) FSW joints.
Fig. 10.  Tensile test results of the whole and different slices of FSW joints, (a) stress-strain, (b) YS, (c) UTS, and (d) elongation.
Fig. 11.  DIC results for strain distribution of (a) the whole and different slices (b-top, c-middle, d-bottom) of a SS-FSW joint (300 rpm, 60 mm/min).
Fig. 12.  Distribution of YS along the transverse section of SS-FSW joint (300 rpm, 60 mm/min).
Fig. 13.  DIC results for strain distribution of (a) the whole and different slices ((b)-top, (c)-middle, (d)-bottom) of a BB-FSW joint (150 rpm, 150 mm/min).
Fig. 14.  Typical SEM images showing the fracture surfaces of (a and b) SS-FSW and (c and d) BB-FSW samples (a and c: secondary electron images, b and d: back-scattered electron images).
[1] M. Skinner, R.L. Edwards, Mater. Sci. Forum 426 (2003) 2849-2854.
[2] W.M. Thomas, C.S. Wiesner, D.J. Marks, D.G. Stsines, Sci. Technol. Weld. Join.14(2009) 247-253.
[3] S.J. Chen, H. Li, S. Lu, R.Y. Ni, J.H. Dong, Int. J. Adv. Manuf. Technol. 86(2016)337-346.
[4] S.J. Chen, H. Li, M.F. Wu, J.R. Xue, J.H. Dong, J. Vibroeng. 18(2016)70-80.
[5] M.K. Sued, D. Pons, J. Lavroff, E.H. Wong, Mater. Des. 54(2014) 632-643.
[6] H.J. Zhang, M. Wang, X. Zhang, G. Yang, Mater. Des. 65(2015) 559-566.
[7] W.F. Xu, W. Zhang, X.L. Wu, Metall. Mater. Trans. A 48 (2017) 1078-1091.
[8] F. Marie, F. Guerin, D. Deloison, D. Aliag, C. Desrayaud, 7th InternationalSymposium on Friction Stir Welding, May 20-22, Awaji Island (Japan), 2008.
[9] T. Neumann, R. Zettler, P. Vilaca, A Publication of TMS, 2007, pp. 55-72.
[10] M.K. Sued, D. Pons, J. Lavroff, E.H. Wong, Mater. Des. 54(2014) 632-643.
[11] H.J. Liu, J.C. Hou, H. Guo, Mater. Des. 50(2013) 872-878.
[12] L. Wan, Y. Huang, Z. Lv, S. Lv, J. Feng, Mater. Des. 55(2014) 197-203.
[13] M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M.Halvarsson, J. Martin, L.G. Johansson, Mater. Des. 108(2016) 114-125.
[14] X.M. Liu, J.S. Yao, Y. Cai, H. Meng, Z.D. Zou, Appl. Mech. Mater.433-435(2013)2091-2095.
[15] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, Mater. Sci. Eng.A 280 (2000) 102-107.
[16] L. John, Mater. Sci.Forum 519-521(2006) 1233-1238.
[17] S.R. Ren, Z.Y. Ma, L.Q. Chen, Mater. Sci. Eng. A 479 (2008) 293-299.
[18] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Int. Mater. Rev. 54(2009) 49-93.
[19] J. Shen, F. Wang, U.F.H. Suhuddin, S. Hu, W. Li, J.F. dos Santos, Metall. Mater.Trans. A 46 (2015) 2809-2813.
[20] Z. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 44 (2013) 4081-4097.
[21] K. Elangovan, V. Balasubramanian, Mater. Charact. 59(2008) 1168-1177.
[22] B. Heinz, B. Skrotzki, Metal. Mater. Trans. B 33 (2002) 489-498.
[23] M.J. Starink, A. Deschamps, S.C. Wang, Scr. Mater. 58(2008) 377-382.
[24] A.L. Lally, D. Alléhaux, F. Marie, C. Dalle Donne, G. Biallas, Weld. World 50(2006) 98-106.
[25] M.A. Torres Obregon, Effect of Process Parameters on TemperatureDistribution, Microstructure, and Mechanical Properties of Self-reactingFriction Stir Welded Aluminum Alloy 6061-T651, The University of Texas at ElPaso, 2011.
[26] F. Zhang, X. Su, Z. Chen, Z. Nie, Mater. Des. 67(2015) 483-491.
[27] F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, J.F. dos Santos, Mater.Des. 86(2015)933-940.
[28] H.J. Liu, H.J. Zhang, L. Yu, J. Mater. Eng.Perform. 20(2011)1419-1422.
[29] S.B. Lin, Y.H. Zhao, L. Wu, Mater. Sci. Technol. 22(2006) 995-998.
[30] C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater. 53(2005) 2447-2458.
[31] C. Genevois, A. Deschamps, P. Vacher, Mater. Sci. Eng. A 415 (2006) 162-170.
[1] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[2] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[3] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[4] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[5] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[6] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[7] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[8] Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. 材料科学与技术, 2020, 39(0): 14-21.
[9] Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. 材料科学与技术, 2020, 39(0): 144-154.
[10] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[11] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[12] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[13] Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries[J]. 材料科学与技术, 2020, 39(0): 39-47.
[14] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[15] Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model[J]. 材料科学与技术, 2020, 39(0): 89-98.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.