J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (8): 807-814.DOI: 10.1016/j.jmst.2017.05.005
• Orginal Article • Previous Articles Next Articles
Xie Beia, Yi Jipenga, Peng Jiana, Zhang Xingb(), Lei Lei c, Zhao Dapenga, Lei Zhixind, Nie Heminae(
)
Received:
2016-11-21
Revised:
2017-01-23
Accepted:
2017-02-07
Online:
2017-08-20
Published:
2017-10-31
Xie Bei, Yi Jipeng, Peng Jian, Zhang Xing, Lei Lei, Zhao Dapeng, Lei Zhixin, Nie Hemin. Characterization of synergistic anti-tumor effects of doxorubicin and p53 via graphene oxide-polyethyleneimine nanocarriers[J]. J. Mater. Sci. Technol., 2017, 33(8): 807-814.
Fig. 1. Characterization of different GO-PEI based complexes: (a) UV-vis spectroscopy of GO, PEI, GO-PEI, Dox, and Dox/GO-PEI; (b) FTIR analysis of GO and GO-PEI; (c) emission of Dox, GO and Dox/GO-PEI at 600 nm.
Fig. 2. Comparison of particle sizes (a) and zeta potentials (b) of GO, PEI, GO-PEI, Dox/GO-PEI, GO-PEI/p53 and Dox/GO-PEI/p53; TEM micrographs of GO (c), GO-PEI (d) and Dox/GO-PEI/p53 (e) (*p < 0.05).
Fig. 3. Photos showing colloidal stability of GO, GO/PEI mixture and GO-PEI conjugates in water, PBS, and 10% serum-containing mediumat 1 h and 3 h, respectively.
Fig. 5. Simultaneous delivery of Dox and DNA: (a) agarose gel electrophoretic assay of GO-PEI/p53 complexes fabricated at different PEI/DNA ratios, 8:1, 16:1, 25:1, 40:1 and 70:1, with free native plasmid as control. Lane 1: naked p53; lanes 2-6: GO-PEI/p53 complexes fabricated at PEI/DNA ratios of 8:1, 16:1, 25:1, 40:1 and 70:1, respectively; (b) co-localization of green fluorescence of EGFP and red fluorescence of Dox delivered by Dox/GO-PEI/EGFP. Scale bar = 100 μm.
Fig. 7. Real-time monitoring of the proliferation of HeLa cells treated by GO, PEI, GO-PEI, Dox/GO-PEI, GO-PEI/p53, Dox/GO-PEI/p53 and free Dox, with cell cultures without treatment as control.
|
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[3] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[4] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[5] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
[6] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[7] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[8] | Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation [J]. J. Mater. Sci. Technol., 2018, 34(9): 1481-1486. |
[9] | Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1103-1109. |
[10] | Dandan Ke, Jin Wang, Hongming Zhang, Yuan Li, Lu Zhang, Xin Zhao, Shumin Han. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(12): 2350-2358. |
[11] | Zhang Wei, Du Xiaoli, Tan Yueyue, Hu Jinbo, Li Zhen, Tang Bohejin. Amorphous Cobalt Boron Alloy@Graphene Oxide Nanocomposites for Pseudocapacitor Applications [J]. J. Mater. Sci. Technol., 2017, 33(5): 438-443. |
[12] | Fan Changjiang,Wang Dong-An. Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery [J]. J. Mater. Sci. Technol., 2016, 32(9): 840-844. |
[13] | Ghasem Hosseini Mir,Shahryari Elham. Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor [J]. J. Mater. Sci. Technol., 2016, 32(8): 763-773. |
[14] | T. Kavinkumar, S. Manivannan. Synthesis, Characterization and Gas Sensing Properties of Graphene Oxide-Multiwalled Carbon Nanotube Composite [J]. J. Mater. Sci. Technol., 2016, 32(7): 626-632. |
[15] | Yunyu Li, Ling-jun Guo, Ya-wen Wang, He-jun Li, Qiang Song. A Novel Multiscale Reinforcement by In-Situ Growing Carbon Nanotubes on Graphene Oxide Grafted Carbon Fibers and Its Reinforced Carbon/Carbon Composites with Improved Tensile Properties [J]. J. Mater. Sci. Technol., 2016, 32(5): 419-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||