J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (8): 800-806.DOI: 10.1016/j.jmst.2016.06.029
• Orginal Article • Previous Articles Next Articles
Han Shuangshuanga, Yang Fana, Liu Liyuea, Zhou Mia, Shan Yongkuia, Li Dezengab()
Received:
2016-02-09
Revised:
2016-06-04
Accepted:
2016-06-06
Online:
2017-08-20
Published:
2017-10-31
Han Shuangshuang, Yang Fan, Liu Liyue, Zhou Mi, Shan Yongkui, Li Dezeng. Direct growth of special-shape graphene on different templates by remote catalyzation of Cu nanoparticles[J]. J. Mater. Sci. Technol., 2017, 33(8): 800-806.
Scheme 1 Schematic illustration of graphene growth mechanism by remote catalyzation of Cu nanoparticles (NPs) using ambient pressure chemical vapor deposition.
Fig. 1. SEM images of monodispersed SiO2 nanoshperes (NSs) coatings (a) before and (b) after growth of graphene at 1000 °C for 20 min and (c) magnified image corresponding to the square area in (b).
Fig. 2. TEM images of (a) G/SiO2 NSs, (b) partly etched G/SiO2 NSs and (c) graphene hollow NSs; (d) HRTEM image of G/SiO2 NSs and corresponding SAED pattern (the inset).
Fig. 3. (a) Raman spectra of G/SiO2 NSs at 1000 °C for different growth time with a time step of 5 min; (b) intensity ratios I2D/IG and ID/IG of graphene on SiO2 NSs as a function of growth time, inset in Fig. 3(b) shows the calculated in-plane crystal size as a function of growth time.
Fig. 5. (a) Photograph of anodic aluminum oxide (AAO); SEM images of AAO templates before growth process (b), top view (c) and profile section (d) of graphene-coated anodic aluminum oxide (G/AAO) at 1000 °C for 20 min.
Fig. 6. SEM images of (a) G/AAO and (b) graphene tube after removing the AAO templates; (c) TEM and (d) dark-field images of individual graphene tube; (e) HRTEM image of the folded edge of an individual graphene tube; (f) SAED pattern of the free-standing graphene tube.
|
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[3] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[4] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
[5] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[6] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[7] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[8] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[9] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[10] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[11] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[12] | Jin Li, Qin Wang, Lei Zheng, Hongbo Liu. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water [J]. J. Mater. Sci. Technol., 2020, 41(0): 68-75. |
[13] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[14] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[15] | Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene [J]. J. Mater. Sci. Technol., 2020, 53(0): 140-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||