J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (11): 1129-1136.DOI: 10.1016/j.jmst.2016.09.007
• Orginal Article • Previous Articles Next Articles
Nasir Bashir M.(),Haseeb A.S.M.A.(
),Zayed Mohammad Saliqur Rahman Abu(
),Fazal M.A.
Received:
2016-04-05
Accepted:
2016-08-31
Online:
2016-11-20
Published:
2017-02-16
Contact:
Haseeb A.S.M.A.
Nasir Bashir M.,Haseeb A.S.M.A.,Zayed Mohammad Saliqur Rahman Abu,Fazal M.A.. Effect of Cobalt Doping on the Microstructure and Tensile Properties of Lead Free Solder Joint Subjected to Electromigration[J]. J. Mater. Sci. Technol., 2016, 32(11): 1129-1136.
Fig. 1. (a) Photograph of a prepared line type Cu/solder/Cu solder joint, (b) mounted and ground sample in epoxy resin used for EM, (c) schematic diagram of the sample with all dimensions, and (d) description of central angle used for measurement of cross-sectional area[33].
Fig. 2. SEM back-scattered electron images of (a), (c) SAC305 and (d), (f) SAC305+2 wt% Co NP solder joints. Each micrograph corresponds to one end of the joint and (d), (e) correspond to the solder bulk of SAC305 and SAC305+2 wt% Co NP solder joints.
Location | Element composition (wt%) ------------------------- | |||
---|---|---|---|---|
Cu | Ag | Sn | Co | |
Interfacial IMC layer near to solder | 54.24 | 1.64 | 42.62 | 1.5 |
Interfacial IMC near to Cu substrate | 55.01 | 1.12 | 43.01 | 0.86 |
IMCs in solder matrix | 50.355 | 1.435 | 47.31 | 0.9 |
Table 1. EDX elemental compositions of IMC phases in SAC305+ 2 wt% Co NP sample
Location | Element composition (wt%) ------------------------- | |||
---|---|---|---|---|
Cu | Ag | Sn | Co | |
Interfacial IMC layer near to solder | 54.24 | 1.64 | 42.62 | 1.5 |
Interfacial IMC near to Cu substrate | 55.01 | 1.12 | 43.01 | 0.86 |
IMCs in solder matrix | 50.355 | 1.435 | 47.31 | 0.9 |
Fig. 3. FESEM backscattered electron images of SAC305 solder joint after EM test for 192, 384, 768 and 1128 h. (a), (b), (c) and (d) show cathode side, while (e), (f), (g) and (h) show anode side.
Fig. 4. FESEM backscattered electron images of SAC305+2 wt% Co NP solder joint after EM test for 192, 384, 768 and 1128 h. (a), (b), (c) and (d) show cathode side, while (e), (f), (g) and (h) show anode side.
EM time (h) | Cu6Sn5 (×10-6 µm/s) | (Cu, Co)6Sn5(×10-7 µm/s) |
---|---|---|
192 | 1.591 | 1.44 |
384 | 1.880 | 2.170 |
768 | 1.591 | 2.531 |
1128 | 1.280 | 2.201 |
Average | 1.585 ± 0.245 | 2.231 ± 0.460 |
Table 2. Anodic growth rate of IMCs in SAC305 solder with 0 and 2 wt% Co doped flux at various EM time interval
EM time (h) | Cu6Sn5 (×10-6 µm/s) | (Cu, Co)6Sn5(×10-7 µm/s) |
---|---|---|
192 | 1.591 | 1.44 |
384 | 1.880 | 2.170 |
768 | 1.591 | 2.531 |
1128 | 1.280 | 2.201 |
Average | 1.585 ± 0.245 | 2.231 ± 0.460 |
Fig. 6. EDX elemental maps of SAC305 + 2 wt% Co NP solder joint after EM test for 1128 h. Elemental maps for (a) SEM image, (b) Co, (c) Sn, and (d) Ag.
Composition | n | k (m2/s) | Current density (A/cm2) | Temperature T (k) | Maximum EM time t (h) | References |
---|---|---|---|---|---|---|
Cu/SAC/Cu | 0.88 | 8.85 × 10-12 | 1.0 × 104 | 353 | 1128 | This study |
Cu/SAC+Co/Cu | 1.40 | 6.31 × 10-16 | 1.0 × 104 | 353 | 1128 | This study |
Cu/SAC/Cu | 0.65 | 5.72 × 10-13 | 1.0 × 103 | 343 | 360 | [ |
Cu/SAC/Cu | 0.63 | 1.41 × 10-12 | 2.0 × 103 | 343 | 360 | [ |
Table 3. Comparison of estimated value of n and k with literature
Composition | n | k (m2/s) | Current density (A/cm2) | Temperature T (k) | Maximum EM time t (h) | References |
---|---|---|---|---|---|---|
Cu/SAC/Cu | 0.88 | 8.85 × 10-12 | 1.0 × 104 | 353 | 1128 | This study |
Cu/SAC+Co/Cu | 1.40 | 6.31 × 10-16 | 1.0 × 104 | 353 | 1128 | This study |
Cu/SAC/Cu | 0.65 | 5.72 × 10-13 | 1.0 × 103 | 343 | 360 | [ |
Cu/SAC/Cu | 0.63 | 1.41 × 10-12 | 2.0 × 103 | 343 | 360 | [ |
|
[1] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[2] | Madhusudhan Alle, Seung-Hwan Lee, Jin-Chul Kim. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity [J]. J. Mater. Sci. Technol., 2020, 41(0): 168-177. |
[3] | Vellaichamy Balakumar, Hyungjoo Kim, Ji Won Ryu, Ramalingam Manivannan, Young-A Son. Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction [J]. J. Mater. Sci. Technol., 2020, 40(0): 176-184. |
[4] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[5] | Wenqiang Hu, Zhenying Huang, Qun Yu, Yuanbo Wang, Yidan Jiao, Cong Lei, Leping Cai, Hongxiang Zhai, Yang Zhou. Ti2AlC triggered in-situ ultrafine TiC/Inconel 718 composites: Microstructure and enhanced properties [J]. J. Mater. Sci. Technol., 2020, 51(0): 70-78. |
[6] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[7] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[8] | Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration [J]. J. Mater. Sci. Technol., 2020, 44(0): 160-170. |
[9] | Yongyong Xue, Na Wang, Zhi Zeng, Jinpeng Huang, Zhiming Xiang, Yan-Qing Guan. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models [J]. J. Mater. Sci. Technol., 2020, 43(0): 197-207. |
[10] | Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal [J]. J. Mater. Sci. Technol., 2020, 57(0): 43-50. |
[11] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
[12] | Elham Gharibshahi, Brandon D. Young, Amar S. Bhalla, Ruyan Guo. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles [J]. J. Mater. Sci. Technol., 2020, 57(0): 180-187. |
[13] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Fan Yang, Yihan Zhou, Naifang Zhang, Sheng Cao, Liao Yu, Jianguo Li. Intergrowth mechanism and morphology prediction of faceted Al3Ni formed during solidification by a spatial geometric model [J]. J. Mater. Sci. Technol., 2020, 54(0): 40-47. |
[14] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[15] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||