Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (10): 1843-1850    DOI: 10.1016/j.jmst.2018.02.008
Orginal Article Current Issue | Archive | Adv Search |
Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler
Duo Liuab, Yanyu Songb, Bin Shib, Qi Zhangb, Xiaoguo Songab(), Hongwei Niub, Jicai Fengab
aState Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
bShandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
Download:  HTML  PDF(5751KB) 
Export:  BibTeX | EndNote (RIS)      

A novel graphene reinforced BNi-2 composite filler was developed for brazing GH99 superalloy. The interfacial microstructure of brazed joints was analyzed by field emission scanning electron microscope and a transmission electron microscope. The effects of graphene addition on the microstructure evolution and mechanical properties of brazed joints were investigated, and the strengthening mechanism of graphene was analyzed. The results revealed that due to the addition of graphene, M23(C,B)6 compounds were synthesized in the γ solid solution and brittle boride precipitates near the brazing seam decreased. Graphene was effective in retarding solute atoms diffusion thus impeding the precipitation of borides. Furthermore, the low coefficient of thermal expansion (CTE) of graphene was conducive to relieve stress concentration of the brazed joints during the cooling process. The shear strengths of brazed joints were significantly improved by exerting the strengthening effect of graphene. The maximum shear strengths of the brazed joints were 410.4 MPa and 329.7 MPa at room temperature and 800 °C, respectively.

Key words:  Graphene      GH99 superalloy      Brazing      Microstructure      Mechanical properties     
Received:  15 November 2017      Published:  01 November 2018

Cite this article: 

Duo Liu, Yanyu Song, Bin Shi, Qi Zhang, Xiaoguo Song, Hongwei Niu, Jicai Feng. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler. J. Mater. Sci. Technol., 2018, 34(10): 1843-1850.

URL:     OR

Cr Co W Mo Si B Fe Al Ti Ni
GH99 superalloy 18.21 6.67 8.03 2.86 - - 0.32 1.15 1.43 Bal.
BNi-2 7.06 - - - 4.54 2.85 3.04 - - Bal.
Table 1  Chemical compositions of GH99 superalloy and BNi-2 (wt%).
Fig. 1.  Microstructure of GH99 superalloy.
Fig. 2.  Morphologies of BNi-2 filler (a) and BNi-2G filler (b).
Fig. 3.  Typical microstructures of GH99 superalloy joints brazed at 1170 °C for 30 min (a) and magnified morphology of DZ.
Spot Ni Cr Si Mo W Fe Other element
A 71.27 14.32 4.42 0.54 1.15 2.56 5.74
B 11.62 46.34 0.01 25.21 14.28 1.53 1.01
C 23.85 40.90 - 19.15 12.94 2.04 1.12
Table 2  Chemical compositions at each spot shown in Fig. 3 (at.%).
Fig. 4.  Microstructures of GH99 superalloy joints brazed at 1090 °C (a), 1130 °C (b), 1170 °C (c) and 1200 °C (d).
Fig. 5.  Magnified images of DZ in Fig. 4 for GH99 superalloy joints brazed at 1090 °C (a), 1130 °C (b), 1170 °C (c) and 1200 °C (d).
Fig. 6.  Effect of brazing temperature on shear strength of GH99 superalloy joints brazed for 30 min.
Fig. 7.  EBSD analysis of grain morphologies (a, b) and distribution of grain size (c, d) of base metal before (a, c) and after (b, d) 1200 °C/30 min brazing process.
Fig. 8.  Microstructures of joints brazed with BNi-2G filler (a) and magnified images of DZ (b).
Fig. 9.  TEM image of BS (a) and SEAD pattern of γ solid solution and M23(C,B)6 (b).
Fig. 10.  Schematic diagram of interfacial microstructure: (a) formation of liquid phase; (b) spreading of liquid phase; (c) isothermal solidification; (d) formation of interface.
Fig. 11.  Room-temperature shear strength and high-temperature shear strength of brazed joints.
Fig. 12.  Fracture morphologies of joints brazed with BNi-2 filler (a, b) and BNi-2G composite filler (c, d) at low (a, c) and high (b, d) magnification.
Spot Ni Cr Si Mo W Co Fe Other element
A 46.20 28.59 1.30 6.58 5.27 5.69 1.16 5.21
B 76.07 9.52 6.79 0.31 0.92 2.51 1.91 1.97
Table 3  Chemical compositions at each spot shown in Fig. 12 (at.%).
Fig. 13.  High-temperature (800 °C) shear fracture morphologies of joints brazed using BNi-2 filler (a) and BNi-2G composite filler (b).
[1] T.M. Pollock, S. Tin, J. Propuls. Power 22 (2006) 361-374.
doi: 10.2514/1.18239
[2] R.C. Reed, The Superalloys: Fundamentals and Applications, CambridgeUniversity Press, Cambridge, 2006.
[3] B. Binesh, A.J. Gharehbagh, J. Mater. Sci. Technol. 11(2016) 1137-1151.
[4] Y.H. Jing, Z. Zheng, E.Z. Liu, Y. Guo, J. Mater. Sci. Technol. 30(2014) 480-486.
doi: 10.1016/j.jmst.2013.12.010
[5] M. Montazeri, F.M. Ghaini, Mater. Charact. 67(2012) 65-73.
doi: 10.1016/j.matchar.2012.02.019
[6] Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, G. Baxter, Metall.Mater. Trans. A 38 (2007) 1608-1620.
doi: 10.1007/s11661-007-9194-6
[7] T.J. Ma, M. Yan, X.W. Yang, W.Y. Li, Y.J. Chao, Mater. Des. 85(2015) 613-617.
doi: 10.1016/j.matdes.2015.07.046
[8] T.J. Ma, X. Chen, M.Y. Li, X.Y. Wang, Y. Zhang, S.Q. Yang, Mater. Des. 89(2016)85-93.
doi: 10.1016/j.matdes.2015.09.143
[9] K. Łyczkowska, J. Michalska, Arch. Metall. Mater. 62(2017) 653-656.
doi: 10.1515/amm-2017-0100
[10] M. Pang, G. Yu, H.H. Wang, C.Y. Zheng, J. Mater. Process. Technol. 207(2008)271-275.
doi: 10.1016/j.jmatprotec.2007.12.091
[11] X. Qi, X. Xue, B. Tang, H.C. Kou, R.X. Hu, J. Li, Rare Metal. Mater. Eng. 44(2015)1575-1580.
doi: 10.1016/S1875-5372(15)30095-3
[12] M.S. Yeh, C.B. Chang, T.H. Chuang, J. Mater. Eng. Perform. 9(2000) 51-55.
doi: 10.1361/105994900770346277
[13] Q.M. Zhang, X.D. He, Mater. Charact. 60(2009) 178-182.
doi: 10.1016/j.matchar.2008.08.013
[14] M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Mater. Sci. Eng. A 447 (2007)125-133.
doi: 10.1016/j.msea.2006.10.045
[15] J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, A. Hazotte, J. Mater.Process. Technol. 213(2013) 20-29.
doi: 10.1016/j.jmatprotec.2012.07.016
[16] V. Jalilvand, H. Omidvar, H.R. Shakeri, M.R. Rahimipour, Mater. Charact. 75(2013) 20-28.
doi: 10.1016/j.matchar.2012.10.004
[17] G.O. Cook, C.D. Sorensen, J. Mater. Sci. 46(2011) 5305-5323.
doi: 10.1007/s10853-011-5561-1
[18] Y.X. Zhao, X.G. Song, C.W. Tan, S.P. Hu, J. Cao, J.C. Feng, Vacuum 142 (2017)58-65.
doi: 10.1016/j.vacuum.2017.05.005
[19] J. Shen, Y.C. Chan, Microelectron. Reliab. 49(2009) 223-234.
doi: 10.1016/j.microrel.2008.10.004
[20] H.M. Hdz-García, A.I. Martinez, R. Mu˜noz-Arroyo, J.L. Acevedo-Dávila, F. García-Vázquez, F.A. Reyes-Valdes, Mater. Sci. Technol. 30(2014) 259-262.
doi: 10.1016/j.jmst.2013.11.006
[21] S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32(2011)4720-4727.
doi: 10.1016/j.matdes.2011.06.044
[22] J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, J. Electron. Mater. 35(2006)1672-1679.
doi: 10.1007/s11664-006-0216-8
[23] V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synthetic. Met. 220(2016) 524-532.
doi: 10.1016/j.synthmet.2016.07.011
[24] Z. Cai, H.Z. Xiong, Z.N. Zhu, H.B. Huang, L.A. Li, Y.N. Huang, X.H. Yu, Synthetic.Met. 227(2017) 100-105.
doi: 10.1016/j.synthmet.2017.03.012
[25] X.R. Song, H.J. Li, X. Zeng, L. Zhang, Mater. Lett. 183(2016) 232-235.
doi: 10.1016/j.matlet.2016.07.111
[26] H.T. Wang, Q. Feng, Y.C. Cheng, Y.B. Yao, Q.X. Wang, K. Li, U. Schwingenschlögl,X.X. Zhang, W. Yang, J. Phys. Chem. C 117 (2013) 632-4638.
[27] J.L. Qi, Z.Y. Wang, J.H. Lin, T.Q. Zhang, A.T. Zhang, J. Cao, L.X. Zhang, J.C. Feng,Vacuum 136 (2017) 142-145.
doi: 10.1016/j.vacuum.2016.11.032
[28] Y.L. Huang, Z.Y. Xiu, G.H. Wu, Y.H. Tian, P. He, X.L. Gu, W.M. Long, Mater. Lett.169(2016) 262-264.
doi: 10.1016/j.matlet.2016.01.125
[29] D. Liu, Y.Y. Song, Y.H. Zhou, X.G. Song, W. Fu, J.C. Feng, Chin. J. Aeronaut.(2017), .
[30] Z.Y. Wang, G. Wang, M.N. Li, J.H. Lin, Q. Ma, A.T. Zhang, Z.X. Zhong, J.L. Qi, J.C.Feng, Carbon 118 (2017) 723-730.
doi: 10.1016/j.carbon.2017.03.099
[31] N. Wu, Y.J. Li, Q.S. Ma, Mater. Des. 53(2014) 816-821.
doi: 10.1016/j.matdes.2013.07.063
[32] Y. Luo, Q. Zhang, W.C. Jiang, Y.C. Zhang, M.M. Hao, S.T. Tu, Mater. Des. 115(2017) 458-466.
doi: 10.1016/j.matdes.2016.11.069
[33] Q.S. Ma, Y.J. Li, N. Wu, J. Wang, J. Mater. Eng. Perform. 22(2013) 1660-1665.
doi: 10.1007/s11665-012-0463-1
[34] W.B. Guo, X.S. Leng, T.M. Luan, J.C. Yan, J.S. He, Ultrason. Sonochem. 36(2017)354-361.
doi: 10.1016/j.ultsonch.2016.12.002
[35] L.X. Zhang, Z. Sun, Q. Xue, M. Lei, X.Y. Tian, Mater. Des. 90(2016) 949-957.
doi: 10.1016/j.matdes.2015.11.041
[36] Y.T. Peng, K. Deng, J. Alloys Compd. 625(2015) 44-51.
doi: 10.1016/j.jallcom.2014.11.110
[37] V. Jalilvand, H. Omidvar, M.R. Rahimipour, H.R. Shaken, Mater. Des. 52(2013)36-46.
doi: 10.1016/j.matdes.2013.05.042
[1] Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior[J]. 材料科学与技术, 2019, 35(5): 939-945.
[2] L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. 材料科学与技术, 2019, 35(5): 917-925.
[3] Woo Jin Lee, Jisoo Kim, Hyung Wook Park. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation[J]. 材料科学与技术, 2019, 35(5): 891-901.
[4] Jingbo Hu, Changqing Fang, Shisheng Zhou, Youliang Cheng, Hanzhi Han. Microstructure characterization and thermal properties of the waste-styrene-butadiene-rubber (WSBR)-modified petroleum-based mesophase asphalt[J]. 材料科学与技术, 2019, 35(5): 852-857.
[5] Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials[J]. 材料科学与技术, 2019, 35(5): 833-851.
[6] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[7] Y.F. Sun, H. Fujii, Y. Sato, Y. Morisada. Friction stir spot welding of SPCC low carbon steel plates at extremely low welding temperature[J]. 材料科学与技术, 2019, 35(5): 733-741.
[8] SnSeYeongseon Kim, Younghwan Jin, Giwan Yoon, In Chung, Hana Yoon, Chung-Yul Yoo, Sang Hyun Park. Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe[J]. 材料科学与技术, 2019, 35(5): 711-718.
[9] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[10] Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet[J]. 材料科学与技术, 2019, 35(4): 591-595.
[11] Gang Qin, Ruirun Chen, Huiting Zheng, Hongze Fang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition[J]. 材料科学与技术, 2019, 35(4): 578-583.
[12] Junxiu Chen, Lili Tan, Xiaoming Yu, Ke Yang. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. 材料科学与技术, 2019, 35(4): 503-511.
[13] Jie Huang, Kai-Ming Zhang, Yun-Fei Jia, Cheng-Cheng Zhang, Xian-Cheng Zhang, Xian-Feng Ma, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment[J]. 材料科学与技术, 2019, 35(3): 409-417.
[14] Kaiqi Hu, Qingfei Xu, Xia Ma, Qianqian Sun, Tong Gao, Xiangfa Liu. A novel heat-resistant Al-Si-Cu-Ni-Mg base material synergistically strengthened by Ni-rich intermetallics and nano-AlNp microskeletons[J]. 材料科学与技术, 2019, 35(3): 306-312.
[15] M. Jalili, H. Ghanbari, S.Moemen Bellah, R. Malekfar. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation[J]. 材料科学与技术, 2019, 35(3): 292-299.
[1] Guangiiang YUAN, Yang ZHOU, Daming CHEN, Bangsheng LI. Preparation of Silicon Carbide with High Properties[J]. J Mater Sci Technol, 2001, 17(01): 53 -54 .
[2] G.M. Owolabi, H.A. Whitworth. Modeling and Simulation of Microstructurally Small Crack Formation and Growth in Notched Nickel-base Superalloy Component[J]. J. Mater. Sci. Technol., 2014, 30(3): 203 -212 .
[3] Han X.B.,Qian Y.,Liu W.,Chen D.M.,Yang K.. Effect of Preparation Technique on Microstructure and Hydrogen Storage Properties of LaNi3.8Al1.0Mn0.2 Alloys[J]. J. Mater. Sci. Technol., 2016, 32(12): 1332 -1338 .
[4] Shi Hui, Chen Ke, Liang Zhiyuan, Dong Fengbo, Yu Taiwu, Dong Xianping, Zhang Lanting, Shan Aidang. Intermetallic Compounds in the Banded Structure and Their Effect on Mechanical Properties of Al/Mg Dissimilar Friction Stir Welding Joints[J]. J. Mater. Sci. Technol., 2017, 33(4): 359 -366 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.