J. Mater. Sci. Technol. ›› 2024, Vol. 188: 252-269.DOI: 10.1016/j.jmst.2023.12.011
• Research Article • Previous Articles Next Articles
Hongwei Yanga,1, Zichun Zhanga,1, Jun Shua, Yong Hana,b,*
Received:2023-08-31
Revised:2023-11-26
Accepted:2023-12-03
Published:2024-07-20
Online:2024-01-13
Contact:
*State Key Laboratory for Mechanical Behavior of Ma- terials, Xi’an Jiaotong University, Xi’an 710049, China. E-mail address: yonghan@mail.xjtu.edu.cn (Y. Han).
About author:1These authors contributed equally to this work.
Hongwei Yang, Zichun Zhang, Jun Shu, Yong Han. Gradient nanostructure, enhanced surface integrity and fatigue resistance of Ti-6Al-7Nb alloy processed by surface mechanical attrition treatment[J]. J. Mater. Sci. Technol., 2024, 188: 252-269.
| [1] Q. Chen, G.A. Thouas, Mater. Sci. Eng. R 87 (2015) 1-57. [2] T. Efe, J. Schmitt, J. Arthroplast. 26 (2011) 665.e7-665.e12. [3] M.G. Manda, P.P. Psyllaki, D.N. Tsipas, P.T. Koidis, J. Biomed. Mater. Res. B 89 (2009) 264-273. [4] K. Shemtov-Yona, D. Rittel, J. Mech, Behav. Biomed. 49 (2015) 290-299. [5] K. Shemtov-Yona, D. Rittel, Eng. Fail. Anal. 38 (2014) 58-65. [6] P. Ducheyne, D. Kohn, T.S. Smith, Biomaterials 8 (1987) 223-227. [7] C. Fleck, D. Eifler, Int. J. Fatigue 32 (2010) 929-935. [8] R.A. Antunes, M.C.L. de Oliveira, Acta Biomater. 8 (2012) 937-962. [9] K. Doi, S. Miyabe, H. Tsuchiya, S. Fujimoto, J. Mech, Behav. Biomed. 56 (2016) 6-13. [10] T.O. Olugbade, J. Lu, Nano Mater. Sci. 2 (2020) 3-31. [11] Q. Wang, C. Xin, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 702 (2017) 125-132. [12] X.Y. Li, L. Lu, J.G. Li, X. Zhang, H.J. Gao, Nat. Rev. Mater. 5 (2020) 706-723. [13] C.S. Liu, D.X. Liu, X.H. Zhang, D. Liu, A.M. Ma, N. Ao, X.C. Xu, J. Mater. Sci.Technol. 35 (2019) 1555-1562. [14] C.H. Zhang, K. Hu, M. Zheng, W.G. Zhu, G.D. Song, Mater. Sci. Eng. A 813 (2021) 141142. [15] J.W. Tian, J.C. Villegas, W. Yuana, D. Fielden, L. Shaw, P.K. Liaw, D.L. Klarstrom, Mater. Sci. Eng.A 468-470 (2007) 164-170. [16] B.N. Mordyuk, G.I. Prokopenko, Mater. Sci. Eng. A 43 (2006) 396-405. [17] X. Li, B.H. Sun, B. Guan, Y.F. Jia, C.Y. Gong, X.C. Zhang, S.T. Tu, Int. J. Fatigue 146 (2021) 106142. [18] Y.J. Luo, J.B. Chen, X.F. Wang, Y.X. Zhao, A.B. Zhang, C. Xie, Y. Chen, J.K. Du, Eng. Fract. Mech. 200 (2018) 327-338. [19] Y.F. Jia, Y.X. Liu, J. Huang, Y. Fu, X.C. Zhang, Y.C. Xin, S.T. Tu, M.D. Mao, F.Q. Yang, Mater. Sci. Eng. A 764 (2019) 138205. [20] Q. Pan, L. Lu, Scr. Mater. 187 (2020) 301-306. [21] N. Ao, D.X. Liu, X.H. Zhang, J.W. Zhang, S.C. Wu, Int. J. Fatigue 158 (2022) 106732. [22] P. Maure, L. Weiss, T. Grosdidier, P. Bocher, Int. J. Fatigue 140 (2020) 105792. [23] Z.M. Wang, Y.F. Jia, X.C. Zhang, Y. Fu, C.C. Zhang, S.T. Tu, Crit. Rev. Solid State 44 (2019) 445-469. [24] T. Roland, D. Retraint, K. Lu, J. Lu, Scr. Mater. 54 (2006) 1949-1954. [25] Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Min. Met. Mater. 29 (2022) 32-48. [26] Y.G. Liu, M.Q. Li, H.J. Liu, J. Alloy. Compd. 685 (2016) 186-193. [27] B. Thangaraj, S. Narayanan, T.S. Nellaiappan, R. Kulandaivelu, M.H. Lee, T. Nishimura, ACS Appl. Mater. Interfaces 7 (2015) 17731-17747. [28] L. Lei, Q. Zhao, Y. Zhao, C. Wu, S. Huang, W. Jia, J. Mater. Process.Technol. 299 (2022) 117322. [29] X. Huang, W.X. Zhu, K. Chen, R.L. Narayan, U. Ramamurty, L.C. Zhou, W.F. He, Int. J. Plast. 159 (2022) 103476. [30] K. Li, X.S. Fu, R.D. Li, W.L. Zhou, Z.Q. Li, Mater. Des. 86 (2015) 761-764. [31] Y.N. Lenets, R.S. Bellows, Int. J. Fatigue 22 (2000) 521-529. [32] R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie, Mater. Sci. Eng. A 355 (2003) 216-230. [33] C. Fleck, D. Eifler, Adv. Eng. Mater. 3 (2001) 500-503. [34] M. Niinomi, T. Kobayashi, O. Toriyama, N. Kawakami, Y. Ishida, Y. Matsuyama, Met. Mater. Trans. A 27A (1996) 3925-3935. [35] G.R. Huang, W.Y. Tsai, J.C. Huang, C.K. Hu, AIP Adv. 5 (2015) 077126. [36] K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Acta Mater. 52 (2004) 4101-4110. [37] H.W. Yang, M. Yu, R. Wang, B. Li, X. Zhao, Y.L. Hao, Z. Guo, Y. Han, Acta Bio-mater. 116 (2020) 400-414. [38] Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9 (2021) 1922-1941. [39] V. Kumar, A. Sharma, S.S. Hosmani, I. Singh, Int. J. Adv. Manuf. Technol. 120 (2022) 3251-3267. [40] M.R. Ran, C. Zhang, L. Wen, H.Y. Zhou, W.Y. Zheng, Surf. Eng. 32 (2015) 69-78. [41] W.Y. Tsai, J.C. Huang, Y.J. Gao, Y.L. Chung, G.R. Huang, Scr. Mater. 103 (2015) 45-48. [42] H.L. Chan, H.H. Ruan, A.Y. Chen, J. Lu, Acta Mater. 58 (2010) 5086-5096. [43] N. Ao, D.X. Liu, X.C. Xu, X.H. Zhang, D. Liu, Mater. Sci. Eng. A 742 (2019) 820-834. [44] Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415. [45] Y.P. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228. [46] X.D. Ren, W.F. Zhou, F.F. Liu, Y.P. Ren, S.Q. Yuan, N.F. Ren, S.D. Xu, T. Yang, Appl. Surf. Sci. 363 (2016) 44-49. [47] Y.G. Liu, M.Q. Li, Mater. Sci. Eng. A 669 (2016) 7-13. [48] Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci.Tech-nol. 44 (2020) 171-190. |
| [1] | Jian Zhang, Ke Liu, Tong Chen, Chen Xu, Chen Chen, Dingshun Yan, Ann-Christin Dippel, Jun Sun, Xiangdong Ding. Inverse gradient nanostructure through gradient cold rolling demonstrated with superelasticity improvement in Ti-50.3Ni shape memory alloy [J]. J. Mater. Sci. Technol., 2024, 185(0): 233-244. |
| [2] | Bingqian Xu, Jiapeng Sun, Lingling Wang, Jing Han, Guosong Wu. Balanced strength and ductility by asymmetric gradient nanostructure in AZ91 Mg alloy [J]. J. Mater. Sci. Technol., 2024, 184(0): 167-179. |
| [3] | Wanting Sun, Jiasi Luo, Yim Ying Chan, J.H. Luan, Xu-Sheng Yang. An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing [J]. J. Mater. Sci. Technol., 2023, 134(0): 209-222. |
| [4] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
| [5] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
| [6] | Conghui Zhang, Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang. Fatigue life improvement and grain growth of gradient nanostructured industrial zirconium during high cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 87(0): 101-107. |
| [7] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
| [8] | Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys [J]. J. Mater. Sci. Technol., 2021, 88(0): 233-239. |
| [9] | XianCao Ping, ZhangShuang Liu, Xue-Lin Lei, Run-Zi Wang, Xian-Cheng Zhang, Shan-Tung Tu. A novel hole cold-expansion method and its effect on surface integrity of nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 129-137. |
| [10] | Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics [J]. J. Mater. Sci. Technol., 2020, 45(0): 15-22. |
| [11] | Chengsong Liu, Daoxin Liu, Xiaohua Zhang, Dan Liu, Amin Ma, Ni Ao, Xingchen Xu. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process [J]. J. Mater. Sci. Technol., 2019, 35(8): 1555-1562. |
| [12] | K. Zhang, Z.B. Wang. Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1676-1684. |
| [13] | Xiangchen Meng, Bei Liu, Lan Luo, Yan Ding, Xi-Xin Rao, Bin Hu, Yong Liu, Jian Lu. The Portevin-Le Châtelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment [J]. J. Mater. Sci. Technol., 2018, 34(12): 2307-2315. |
| [14] | Liu Xiaowei,Liu Yong,Jin Bin,Lu Yang,Lu Jian. Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing [J]. J. Mater. Sci. Technol., 2017, 33(3): 224-230. |
| [15] | S. Guo, Z.B. Wang, K. Lu. An Aluminide Surface Layer Containing Lower-Al on Ferritic-Martensitic Steel Formed by Lower-Temperature Aluminization [J]. J. Mater. Sci. Technol., 2015, 31(12): 1268-1273. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
