J. Mater. Sci. Technol. ›› 2023, Vol. 133: 183-194.DOI: 10.1016/j.jmst.2022.07.001
• Research article • Previous Articles Next Articles
Changshu Hea,b,c,*(), Jingxun Weia,b, Ying Lia,b, Zhiqiang Zhanga,b, Ni Tiana,b,c, Gaowu Qina,b,c, Liang Zuoa,b
Received:
2022-05-06
Revised:
2022-06-26
Accepted:
2022-07-11
Published:
2022-07-16
Online:
2022-07-16
Contact:
Changshu He
About author:
School of Materials Science and Engineering, North- eastern University, Shenyang 110819, China. E-mail address: changshuhe@mail.neu.edu.cn (C. He).Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Liang Zuo. Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing[J]. J. Mater. Sci. Technol., 2023, 133: 183-194.
Empty Cell | Si | Mg | Mn | Cu | Ti | Fe | Zn | Al |
---|---|---|---|---|---|---|---|---|
ER4043 wire | 5.00 | - | - | 0.03 | 0.02 | 0.14 | 0.02 | Bal. |
Substrate | 0.98 | 0.70 | 0.44 | 0.02 | 0.01 | 0.15 | 0.07 | Bal. |
Table 1. Chemical compositions of the ER4043 aluminum wire and 6082-T6 aluminum alloy substrate (wt.%).
Empty Cell | Si | Mg | Mn | Cu | Ti | Fe | Zn | Al |
---|---|---|---|---|---|---|---|---|
ER4043 wire | 5.00 | - | - | 0.03 | 0.02 | 0.14 | 0.02 | Bal. |
Substrate | 0.98 | 0.70 | 0.44 | 0.02 | 0.01 | 0.15 | 0.07 | Bal. |
Fig. 1. Schematic diagram of the WAAM + interlayer FSP hybrid additive manufacturing: (a) experimental platform for WAAM + interlayer FSP; (b) WAAM processing, (c) milling processing, (d) interlayer FSP deformation.
Fig. 2. (a) Sampling schematics for the microstructural observations, tensile tests, and fatigue tests; the dimensions of (b) tensile specimen and (c) fatigue specimen.
Fig. 3. Macro-structure and microstructure of the WAAM Al-Si alloy: (a) macrostructure; (b) optical micrograph; (c-e) dendritic structures observed in the MPZ fine-grained region, coarse-grained region, and fusion line, respectively; (f-h) LSCM images of the interdendritic distribution of Si particles within the regions of MPZ, PMZ, and HAZ, respectively.
Fig. 4. Macro-structure and microstructure observations of the WAAM + interlayer FSP Al-Si alloy: (a) macrostructure; (b) overlap of the SZ; (c) optical micrograph of SZ; (d) light strip structure in the SZ; LSCM images of distribution of Si particles within the regions of (e) SZ, (f) light strip in the SZ.
Fig. 6. Morphology observations of Si particles: (a) the WAAM Al-Si alloy; (b) enlargement of (a); (c) the WAAM + interlayer FSP Al-Si alloy; (d) enlargement of (c).
Fig. 7. Pores distribution in the WAAM and WAAM + interlayer FSP Al-Si alloy: (a) middle part of the WAAM wall; (b) porosity analysis area; (c) middle part of the WAAM + interlayer FSP wall.
Fig. 8. Tensile properties of the WAAM and WAAM + interlayer FSP Al-Si alloys: (a) engineering stress-strain curves; (b) histograms of average tensile strength and elongation.
Fig. 9. Side views of the fracture surfaces of the WAAM and WAAM + interlayer FSP tensile specimens: (a) horizontal and (b) vertical specimen of the WAAM; (c, e) horizontal and (d, f) vertical specimen of the WAAM + interlayer FSP.
Fig. 10. SEM micrographs of the WAAM and WAAM + interlayer FSP tensile specimen after uniaxial tensile failure: (a) damages and (b) cracks propagation path of the WAAM specimen; (c) WAAM + interlayer FSP tensile specimen.
Fig. 11. Cross-sectional views of fracture surface morphology of the WAAM and WAAM + interlayer FSP tensile specimens: (a) horizontal and (b) vertical specimen of the WAAM; (c) horizontal and (d) vertical specimen of the WAAM + interlayer FSP.
Fig. 13. Fracture morphologies of the fatigue specimens: the WAAM specimen at the maximum stresses of (a) 70 MPa and (b) 110 MPa; the WAAM + interlayer FSP specimen at the maximum stresses of (c) 95 MPa and (d) 110 MPa.
[1] | Y.H. Zhou, X. Lin, N. Kang, W.D. Huang, J. Wang, Z.N. Wang, J. Mater. Sci. Tech- nol. 37 (2020) 143-153. |
[2] | Y.L. Guo, Q.F. Han, J.L. Hu, X.H. Yang, P.C. Mao, J.S. Wang, S.B. Sun, Z. He, J.P. Lu, C. M. Liu, Acta Metall. Sin.-Engl. Lett. 35 (2021) 475-485. |
[3] |
Q.K. Shen, X.D. Kong, X.Z. Chen, J. Mater. Sci. Technol. 74 (2021) 136-142.
DOI URL |
[4] | A. Elrefaey, N.G. Ross, Acta Metall. Sin.-Engl. Lett. 28 (2015) 715-724. |
[5] | C.P. Xue, Y.X. Zhang, P.C. Mao, C.M. Liu, Y.L. Guo, F. Qian, C. Zhang, K.L. Liu, M. S. Zhang, S.Y. Tang, J.S. Wang, Addit. Manuf. 43 (2021) 102019. |
[6] |
T.X. Chang, X.W. Fang, G. Liu, H.K. Zhang, K. Huang, J. Mater. Sci. Technol. 124 (2022) 65-75.
DOI URL |
[7] |
P.A. Colegrove, H.E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, L. D. Cozzolino, J. Mater. Process. Technol. 213 (2013) 1782-1791.
DOI URL |
[8] | P.J. Morais, B. Gomes, P. Santos, M. Gomes, R. Gradinger, M. Schnall, S. Bozorgi, T. Klein, D. Fleischhacker, P. Warczok, A. Falahati, E. Kozeschnik, Materials 13 (2020) 1610. |
[9] |
Y.B. Tian, J.Q. Shen, S.S. Hu, J. Gou, Y. Cui, J. Mater. Sci. Technol. 74 (2021) 35-45.
DOI URL |
[10] |
H.B. Geng, J.L. Li, J.T. Xiong, X. Lin, Sci. Technol. Weld. Join. 22 (2016) 472-483.
DOI URL |
[11] |
F.M. Scotti, F.R. Teixeira, L.J.D. Silva, D.B. de Araújo, R.P. Reis, A. Scotti, J. Manuf. Process. 57 (2020) 23-35.
DOI URL |
[12] | W.F. Xie, T. Huang, C.L. Yang, C.L. Fan, S.B. Lin, W.H. Xu, J. Mater. Process. Tech- nol. 277 (2020) 116470. |
[13] |
P.A. Colegrove, J. Donoghue, F. Martina, J.L. Gu, P. Prangnell, J. Hönnige, Scr. Mater. 135 (2017) 111-118.
DOI URL |
[14] |
J.L. Gu, X.S. Wang, J. Bai, J.L. Ding, S. Williams, Y.C. Zhai, K. Liu, Mater. Sci. Eng. A 712 (2018) 292-301.
DOI URL |
[15] |
Z. Liao, B. Yang, S.N. Xiao, G.W. Yang, T. Zhu, Int. J. Fatigue 151 (2021) 106382.
DOI URL |
[16] |
Y.H. Fu, H.O. Zhang, G.L. Wang, H.F. Wang, J. Mater. Process. Technol. 250 (2017) 220-227.
DOI URL |
[17] |
X.W. Fang, L.J. Zhang, G.P. Chen, K. Huang, F. Xue, L. Wang, J.Y. Zhao, B.H. Lu, Mater. Sci. Eng. A 800 (2021) 140168.
DOI URL |
[18] |
J.L. Gu, J.L. Ding, S.W. Williams, H.M. Gu, P.H. Ma, Y.C. Zhai, J. Mater. Process. Technol. 230 (2016) 26-34.
DOI URL |
[19] |
C. Xie, S.C. Wu, Y.K. Yu, H.O. Zhang, Y.N. Hu, M.B. Zhang, G.L. Wang, J. Mater. Process. Technol. 291 (2021) 117039.
DOI URL |
[20] | R.S. Mishra, M.W. Mahoney, Mater. Sci. Forum 357-359 (2001) 507-514. |
[21] |
I. Charit, R.S. Mishra, J. Mater. Sci. Technol. 34 (2018) 214-218.
DOI URL |
[22] |
W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, M.C. Zhao, J. Mater. Sci. Technol. 35 (2019) 777-783.
DOI |
[23] | Y.Q. Mao, P. Yang, L.M. Ke, Y. Xu, Y.H. Chen, Acta Metall. Sin.-Engl. Lett. 35 (2021) 745-756. |
[24] |
A. Kumar Srivastava, N. Kumar, A. Rai Dixit, Mater. Sci. Eng. B 263 (2021) 114832.
DOI URL |
[25] |
S. Palanivel, P. Nelaturu, B. Glass, R.S. Mishra, Mater. Des. 65 (2015) 934-952.
DOI URL |
[26] |
Z.J. Zhao, X.Q. Yang, S.L. Li, D.X. Li, J. Manuf. Process. 38 (2019) 396-410.
DOI URL |
[27] |
Z.Y. Ma, S.R. Sharma, R.S. Mishra, Scr. Mater. 54 (2006) 1623-1626.
DOI URL |
[28] |
S. Jana, R.S. Mishra, J.B. Baumann, G. Grant, Scr. Mater. 61 (2009) 992-995.
DOI URL |
[29] |
J.G. Santos Macías, C. Elangeswaran, L. Zhao, B. Van Hooreweder, J. Adrien, E. Maire, J.Y. Buffière, W. Ludwig, P.J. Jacques, A. Simar, Scr. Mater. 170 (2019) 124-128.
DOI URL |
[30] |
Y.H. Zhen, J.Q. Shen, S.S. Hu, J. Bi, F.L. Yin, X.Z. Bu, Mater. Lett. 282 (2021) 128701.
DOI URL |
[31] | F. Wang, S. Williams, M. Rush, Int. J. Adv. Manuf. Technol. 57 (2011) 597-603. |
[32] |
F.H. Nie, H.G. Dong, S. Chen, P. Li, L.Y. Wang, Z.X. Zhao, X.T. Li, H. Zhang, J. Mater. Sci. Technol. 34 (2018) 551-560.
DOI URL |
[33] |
J.G. Santos Macías, T. Douillard, L. Zhao, E. Maire, G. Pyka, A. Simar, Acta Mater. 201 (2020) 231-243.
DOI URL |
[34] |
X.C. Liu, C.S. Wu, G.K. Padhy, Scr. Mater. 102 (2015) 95-98.
DOI URL |
[35] |
X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 35 (2019) 972-981.
DOI |
[36] |
G. Moeini, S.V. Sajadifar, T. Wegener, C. Rössler, A. Gerber, S. Böhm, T. Niendorf, J. Mater. Res. Technol. 12 (2021) 1446-1460.
DOI URL |
[37] |
S. Meenia, F. Khan Md, S. Babu, R.J. Immanuel, S.K. Panigrahi, G.D. Janaki Ram, Mater. Charact. 113 (2016) 134-143.
DOI URL |
[38] |
Z.Y. Ma, S.R. Sharma, R.S. Mishra, Mater. Sci. Eng. A 433 (2006) 269-278.
DOI URL |
[39] | S.J. Chen, Y. Han, X.Q. Jiang, X.X. Li, T. Yuan, W. Jiang, X. Wang, J. Mater. Pro- cess. Technol. 297 (2021) 117205. |
[40] |
R. Kumar, V. Pancholi, J. Manuf. Process. 68 (2021) 1214-1223.
DOI URL |
[41] | L. Zhao, J.G. Santos Macías, A. Dolimont, A. Simar, E. Rivière-Lorphèvre, Addit. Manuf. 36 (2020) 101499. |
[42] |
L. Zhao, J.G. Santos Macías, L.P. Ding, H. Idrissi, A. Simar, Mater. Sci. Eng. A 764 (2019) 138210.
DOI URL |
[43] |
L. Zhao, J.G. Santos Macías, T. Douillard, Z.H. Li, A. Simar, Mater. Sci. Eng. A 807 (2021) 140845.
DOI URL |
[44] |
W.B. Qin, J.S. Li, Y.Y. Liu, J.J. Kang, L.N. Zhu, D.F. Shu, P. Peng, D.S. She, D. Z. Meng, Y.S. Li, Mater. Lett. 254 (2019) 116-119.
DOI URL |
[45] |
J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta Mater. 117 (2016) 311-320.
DOI URL |
[46] |
B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Scr. Mater. 141 (2017) 45-49.
DOI URL |
[47] |
D.K. Kim, W. Woo, J.H. Hwang, K. An, S.H. Choi, J. Alloy. Compd. 686 (2016) 281-286.
DOI URL |
[48] | E.O. Hall,Proc. Phys. Soc. Lond. Sect. B 64 (1951) 747-753. |
[49] |
K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, Mater. Sci. Eng. A 437 (2006) 274-280.
DOI URL |
[50] |
S. Sharma, Z.Y. Ma, R.S. Mishra, Scr. Mater. 51 (2004) 237-241.
DOI URL |
[51] |
P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, B.E. Carlson, Mater. Sci. Eng. A 716 (2018) 165-178.
DOI URL |
[52] |
K. Sillapasa, S. Surapunt, Y. Miyashita, Y. Mutoh, N. Seo, Int. J. Fatigue 63 (2014) 162-170.
DOI URL |
[53] |
M.S. Baek, R. Kreethi, T.H. Park, Y. Sohn, K.A. Lee, Mater. Sci. Eng. A 819 (2021) 141486.
DOI URL |
[1] | Hongxiang Jiang, Yan Song, Lili Zhang, Jie He, Shixin Li, Jiuzhou Zhao. Efficient grain refinement of Al alloys induced by in-situ nanoparticles [J]. J. Mater. Sci. Technol., 2022, 124(0): 14-25. |
[2] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[3] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[4] | Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124(0): 41-52. |
[5] | Tianxing Chang, Xuewei Fang, Gang Liu, Hongkai Zhang, Ke Huang. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 65-75. |
[6] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[7] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao, Dong Qiu. Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 129(0): 228-239. |
[8] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
[9] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[10] | Qinyang Zhao, Leandro Bolzoni, Yongnan Chen, Yiku Xu, Rob Torrens, Fei Yang. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms [J]. J. Mater. Sci. Technol., 2022, 126(0): 22-43. |
[11] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[12] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
[13] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[14] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[15] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||