J. Mater. Sci. Technol. ›› 2023, Vol. 133: 165-182.DOI: 10.1016/j.jmst.2022.06.015
• Research article • Previous Articles Next Articles
Zhongxiu Liua, Sihu Haa, Yong Liua,b,**(), Fei Wanga, Feng Taoa, Binrui Xuc, Renhong Yua, Guangxin Wanga, Fengzhang Rena, Hongxia Lid,*(
)
Received:
2022-06-08
Revised:
2022-06-17
Accepted:
2022-06-21
Published:
2022-07-08
Online:
2022-07-08
Contact:
Yong Liu,Hongxia Li
About author:
Provincial and Ministerial Co-Construction of Collab- orative Innovation Center for Non-Ferrous Metal New Materials and Advanced Pro- cessing Technology, Henan Key Laboratory of Non-Ferrous Materials Science & Pro- cessing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China. lihongx0622@126.com (H. Li).Zhongxiu Liu, Sihu Ha, Yong Liu, Fei Wang, Feng Tao, Binrui Xu, Renhong Yu, Guangxin Wang, Fengzhang Ren, Hongxia Li. Application of Ag-based materials in high-performance lithium metal anode: A review[J]. J. Mater. Sci. Technol., 2023, 133: 165-182.
Fig. 1. Timeline of various Ag-based materials for lithium metal anode. Images of Ag nanoparticles homogeneously anchored on the CNF substrate [47] (Reproduced with permission. copyright 2017, Wiley-VCH), Ag nanocrystals anchored on rGO sheets [48] (Reproduced with permission. Copyright 2018, Royal Society of Chemistry), fabrication process of Cu-Ag sample [49] (Reproduced with permission. Copyright 2019, American Chemical Society), synthesis process of Ag-doped lithium [50] (Reproduced with permission. Copyright 2020, Royal Society of Chemistry), and synthesis process of the Ag and stainless steel mesh composite [51] (Reproduced with permission. Copyright 2021, Wiley-VCH).
Fig. 2. (a) Li-Ag phase diagram [50] (Reproduced with permission. Copyright 2020, Royal Society of Chemistry). (b) Contact angle of bare lithium sample and Ag/Li electrode [53] (Reproduced with permission. Copyright 2019, Royal Society of Chemistry). (c) XRD spectra of different molar ratios of pristine lithium and Ag-doped lithium. (d) Structural characterizations of Ag-doped lithium. (e) DFT calculation of binding energies (Eb) for positioning pristine Li and Ag dopants on lithium surface. (f) XANES and (g) EXAFS patterns of Ag-doped Li anodes [50]. (Reproduced with permission Copyright 2020, Royal Society of Chemistry)
Fig. 3. (a) In-situ optical microscopy spectra for delithiation of AgLi anodes. (b) 3D profilometry image of lithium electrode [37] (Reproduced with permission. Copyright 2021, Wiley-VCH). Binding energies of Li atoms (c) with Ag atoms and (d) with Cu atoms [48] (Reproduced with permission. Copyright 2018, Royal Society of Chemistry).
Material | Synthetic methods | Voltage hysteresis Va (V)(C1c (mA cm-2)) | Lifespan Tb (h) [C1c (mA cm-2), C2c (mAh cm-2)] | Refs. |
---|---|---|---|---|
Li host modification | ||||
Ag-WDC | Dip coating method | 30 (1) | 450 (1, 1) | [ |
AgNP/CNFs | Joule heating method | 25 (0.5) | 500 (0.5,1) | [ |
AgNCs@GA | Hydrothermal method | 18 (1) | 100 (2, 1) | [ |
CF/Ag-Li | Electroplating method | 60 (1) | 320 (10, 10) | [ |
3D-AGBN | Blade coating method | 60 (5) | 120 (5, 1) | [ |
MS@AgNW | Hydrothermal method | 19 (2) | 1000 (2, 1) | [ |
MCNF/Ag-Li | Electrospinning method | 26 (1) | 600 (1, 1) | [ |
CC-Ag | Thermal evaporation | 100 (0.2) | 500 (1, 5) | [ |
CC/Ag/Li | Thermal evaporation | 25 (1) | 750 (1, 1) | [ |
Ag-NCNS | Heat treatment method | 15 (0.5) | 2000 (1, 1) | [ |
MXene/AgNW | Blade coating method | 20 (20) | 3000 (20, 10) | [ |
3D-Ag aerogel | Hydrothermal method | 59 (0.5) | 1589 (0.5, 2) | [ |
Ag@CMFs | Multistep templating | 20 (5) | 1000 (1, 1) | [ |
Ag14@NC | Hydrothermal method | 100 (1) | 800 (1, 1) | [ |
AgNPs@GO | Spray coating method | 32 (0.25) | 1000 (0.25, 0.5) | [ |
GO-Ag | Infusion coating method | 25 (1) | 200 (3, 1) | [ |
Ag-rGO | Ray irradiation method | / | 200 (1, 2) | [ |
Ag-NOCP | Electroplating method | 50 (1) | 1400 (1, 1) | [ |
PB-Ag | Dip coating method | 70 (1) | 400 (1, 1) | [ |
a-AZCH | Co-precipitation method | 25 (0.5) | 1500 (0.5, 0.5) | [ |
Ag/N-rGO | Blade-coating method | 22 (2) | 1500 (2, 1) | [ |
Modifying current collector | ||||
Ag/PVDF | Electrospinning method | 100 (4) | 1300 (4, 4) | [ |
Ag@HTO | Mirror reaction method | 15 (1) | 100 (1, 1) | [ |
CuAg-1.5 | Electroless plating method | 35 (1) | 360 (1, 1) | [ |
Cu-Ag@Li | Spray coating method | 18 (1) | 900 (1, 1) | [ |
3D Cu@Ag | Galvanic displacement | 42 (1) | 210 (1, 1) | [ |
TNT-Ag | Cathodic reduction method | 12 (1) | 2500 (1, 2) | [ |
Ag@HKUST | Ethanol reduction method | 9 (0.05) | 300 (0.5, 1) | [ |
Cu@Ag foam | Electrodepositing method | 15 (5) | 3000 (5, 15) | [ |
Ag-Cu | Dip coating method | 80 (1) | 400 (1, 1) | [ |
Ag@Cu foam | Plating technique method | 47 (0.5) | 400 (2, 1) | [ |
3D Ni-Ag2S | Cotton template method | 40 (3) | 267 (3, 1) | [ |
Li-ANCF | Dip coating method | 24 (1,1) | 800 (1, 1) | [ |
Ag@PDA-GO | Spin coating method | 8.2 (1) | 250 (0.5, 1) | [ |
Ag@Cu | Thermal evaporation | / | 400 (0.5, 1) | [ |
Li/Ag@Cu | Dip coating method | 6 (5) | 1000 (1, 1) | [ |
Ag-Li3N-Cu | Dip coating method | / | 200 (0.5, 1) | [ |
Ag@NCHSs | A one-pot reduction method | / | 400 (1, 1) | [ |
Ag@CF | Dip coating method | 30 (1) | 1600 (1, 1) | [ |
Decorating Li metal surface | ||||
Ag@Li | Evaporation method | 38 (5) | 250 (1, 1) | [ |
D-Ag@Li | Rolling method | 16 (2) | 1350 (1, 1) | [ |
Ag/Li | Drop coating method | 70 (5) | 1000 (5, 1) | [ |
Li-Ag-LiF | Drop coating method | 50 (0.5) | 1000 (0.5, 1) | [ |
Ag-Li | Dip coating method | 85 (1) | 900 (1, 1) | [ |
Other strategies | ||||
AgPF6-LiNO3 | Electroless deposition | 20 (0.5) | 3000 (0.5, 0.5) | [ |
NP AgLi | Melting-rolling method | 37(0.5) | 800 (0.5, 0.5) | [ |
Ag@WSe2 | Cold press method | 36 (0.1) | 600 (0.1, 0.05) | [ |
Ag-doped Li | Melt impregnation method | 130 (5) | 600 (5, 10) | [ |
AgNWs@SiO2 | electrospinning method | 55 (0.1) | 500 (0.1, 1) | [ |
Ag-PCNFs-PP | Slurry-coating method | 30 (0.5) | 1500 (2, 2) | [ |
Li92.5Cu5Ag2.5 | Melting-rolling method | 10 (0.5) | 1200 (0.5, 0.5) | [ |
Table 1. Summary of synthetic methods and the battery performance of Li metal anodes enhanced by various Ag-based materials.
Material | Synthetic methods | Voltage hysteresis Va (V)(C1c (mA cm-2)) | Lifespan Tb (h) [C1c (mA cm-2), C2c (mAh cm-2)] | Refs. |
---|---|---|---|---|
Li host modification | ||||
Ag-WDC | Dip coating method | 30 (1) | 450 (1, 1) | [ |
AgNP/CNFs | Joule heating method | 25 (0.5) | 500 (0.5,1) | [ |
AgNCs@GA | Hydrothermal method | 18 (1) | 100 (2, 1) | [ |
CF/Ag-Li | Electroplating method | 60 (1) | 320 (10, 10) | [ |
3D-AGBN | Blade coating method | 60 (5) | 120 (5, 1) | [ |
MS@AgNW | Hydrothermal method | 19 (2) | 1000 (2, 1) | [ |
MCNF/Ag-Li | Electrospinning method | 26 (1) | 600 (1, 1) | [ |
CC-Ag | Thermal evaporation | 100 (0.2) | 500 (1, 5) | [ |
CC/Ag/Li | Thermal evaporation | 25 (1) | 750 (1, 1) | [ |
Ag-NCNS | Heat treatment method | 15 (0.5) | 2000 (1, 1) | [ |
MXene/AgNW | Blade coating method | 20 (20) | 3000 (20, 10) | [ |
3D-Ag aerogel | Hydrothermal method | 59 (0.5) | 1589 (0.5, 2) | [ |
Ag@CMFs | Multistep templating | 20 (5) | 1000 (1, 1) | [ |
Ag14@NC | Hydrothermal method | 100 (1) | 800 (1, 1) | [ |
AgNPs@GO | Spray coating method | 32 (0.25) | 1000 (0.25, 0.5) | [ |
GO-Ag | Infusion coating method | 25 (1) | 200 (3, 1) | [ |
Ag-rGO | Ray irradiation method | / | 200 (1, 2) | [ |
Ag-NOCP | Electroplating method | 50 (1) | 1400 (1, 1) | [ |
PB-Ag | Dip coating method | 70 (1) | 400 (1, 1) | [ |
a-AZCH | Co-precipitation method | 25 (0.5) | 1500 (0.5, 0.5) | [ |
Ag/N-rGO | Blade-coating method | 22 (2) | 1500 (2, 1) | [ |
Modifying current collector | ||||
Ag/PVDF | Electrospinning method | 100 (4) | 1300 (4, 4) | [ |
Ag@HTO | Mirror reaction method | 15 (1) | 100 (1, 1) | [ |
CuAg-1.5 | Electroless plating method | 35 (1) | 360 (1, 1) | [ |
Cu-Ag@Li | Spray coating method | 18 (1) | 900 (1, 1) | [ |
3D Cu@Ag | Galvanic displacement | 42 (1) | 210 (1, 1) | [ |
TNT-Ag | Cathodic reduction method | 12 (1) | 2500 (1, 2) | [ |
Ag@HKUST | Ethanol reduction method | 9 (0.05) | 300 (0.5, 1) | [ |
Cu@Ag foam | Electrodepositing method | 15 (5) | 3000 (5, 15) | [ |
Ag-Cu | Dip coating method | 80 (1) | 400 (1, 1) | [ |
Ag@Cu foam | Plating technique method | 47 (0.5) | 400 (2, 1) | [ |
3D Ni-Ag2S | Cotton template method | 40 (3) | 267 (3, 1) | [ |
Li-ANCF | Dip coating method | 24 (1,1) | 800 (1, 1) | [ |
Ag@PDA-GO | Spin coating method | 8.2 (1) | 250 (0.5, 1) | [ |
Ag@Cu | Thermal evaporation | / | 400 (0.5, 1) | [ |
Li/Ag@Cu | Dip coating method | 6 (5) | 1000 (1, 1) | [ |
Ag-Li3N-Cu | Dip coating method | / | 200 (0.5, 1) | [ |
Ag@NCHSs | A one-pot reduction method | / | 400 (1, 1) | [ |
Ag@CF | Dip coating method | 30 (1) | 1600 (1, 1) | [ |
Decorating Li metal surface | ||||
Ag@Li | Evaporation method | 38 (5) | 250 (1, 1) | [ |
D-Ag@Li | Rolling method | 16 (2) | 1350 (1, 1) | [ |
Ag/Li | Drop coating method | 70 (5) | 1000 (5, 1) | [ |
Li-Ag-LiF | Drop coating method | 50 (0.5) | 1000 (0.5, 1) | [ |
Ag-Li | Dip coating method | 85 (1) | 900 (1, 1) | [ |
Other strategies | ||||
AgPF6-LiNO3 | Electroless deposition | 20 (0.5) | 3000 (0.5, 0.5) | [ |
NP AgLi | Melting-rolling method | 37(0.5) | 800 (0.5, 0.5) | [ |
Ag@WSe2 | Cold press method | 36 (0.1) | 600 (0.1, 0.05) | [ |
Ag-doped Li | Melt impregnation method | 130 (5) | 600 (5, 10) | [ |
AgNWs@SiO2 | electrospinning method | 55 (0.1) | 500 (0.1, 1) | [ |
Ag-PCNFs-PP | Slurry-coating method | 30 (0.5) | 1500 (2, 2) | [ |
Li92.5Cu5Ag2.5 | Melting-rolling method | 10 (0.5) | 1200 (0.5, 0.5) | [ |
Fig. 4. (a) Schematic of the formation of CF/Ag-Li composite electrode; scanning electron microscopy (SEM) images and digital photographs of pristine CF, CF with Ag layer, CF/Ag with molten Li, and metallic Li fully infused in the CF framework. (b) Electrochemical performance of CF/Ag-Li/Li and Li/Li cells [54] (Reproduced with permission. Copyright 2018, Elsevier). (c) Schematics of Li nucleation and growth on Ag modified CNFs. SEM images of pristine AgNP/CNFs, Li nucleation and growth on AgNP/CNFs, and Li deposited on AgNP/CNFs after cycled. (d) Cycling performance of AgNP/CNFs Li anode [47] (Reproduced with permission. Copyright 2017, Wiley-VCH).
Fig. 5. (a) Schematic of the synthetic process and the optical images of AgNCs@GA. (b) Coulombic efficiency of AgNCs@GA-modified electrode [48] (Reproduced with permission. Copyright 2018, Royal Society of Chemistry). (c) Schematic of the fabrication process of the G-Ag aerogel. (d) SEM images of the G-Ag aerogel. (e) Electrochemical performance of the G-Ag aerogel [72] (Reproduced with permission. Copyright 2019, Wiley-VCH).
Fig. 6. (a) Fabrication process of the 3D MS@AgNWs host. (b) Schematic illustration of MS@AgNWs host with the Li-plating process. (c) Coulombic efficiency of MS@AgNWs and Cu foil electrodes. (d) Cycling stability of MS@AgNWs-Li anodes in symmetric cells [58] (Reproduced with permission. Copyright 2020, American Chemical Society).
Fig. 7. (a) Synthesis process for preparing the Ag modified Cu-collector. (b) SEM image of pure Cu and Ag modified collector. (c) Optical photographs before and after fabricating the Ag-modified Cu collector. (d) Coulombic efficiency of Li|Cu and Li|Cu-Ag cells [59] (Reproduced with permission. Copyright 2020, Wiley-VCH). (e) Schematic process of fabricating Ag@HKUST-1 and Li deposition. (f) Cycling performance of Ag@HKUST-1 modified Cu [62] (Reproduced with permission. Copyright 2019, American Chemical Society).
Fig. 8. (a) Schematic of the surface activation and lithium plating processes for the 3D-Cu@Ag electrode. (b) Schematic of the Li plating process. (c) SEM patterns of the 3D-Cu@Ag anode and optical photograph of the electrode after Li plating [60] (Reproduced with permission. Copyright 2019, Royal Society of Chemistry).
Fig. 9. (a) Fabrication process of 3D TNT-Ag scaffolds and Li deposition. (b) SEM images of TNT-Ag [61] (Reproduced with permission. Copyright 2020, Wiley-VCH). (c) Schematic illustration of the Ag modified anode. (d) Cross-sectional SEM images of lithium deposition. (e) Rate capability of ASSBs at 60? °C and (f) coulombic efficiency of the Ag-C|SSE|NMC pouch cell [107] (Reproduced with permission. Copyright 2020, Springer Nature).
Fig. 10. (a) Schematics of the Ag/Li composite anode fabrication process. (b) SEM of Ag/Li hybrid anode after 10 cycles. (c) Voltage profiles of symmetric cells [53] (Reproduced with permission. Copyright 2019, Royal Society of Chemistry). (d) Schematic of the preparation process of the d-Ag@Li anode. (e) SEM images of d-Ag@Li at plating status after 10 cycles and (f) long cyclic performance of d-Ag@Li composite anodes in symmetric cells [51] (Reproduced with permission. Copyright 2021, Wiley-VCH).
Fig. 11. (a) Surface optical photos of silver-doped lithium electrodes and (b) XRD/SEM results of Ag-doped lithium electrodes after exposed 90 days in the air. (c) Cycling performance of NMC 811 cells. (d) SEM images for Ag-doped Li electrodes after cycling. [50] (Reproduced with permission. Copyright 2020, Royal Society of Chemistry). (e) Illustration of the preparation process for nanoporous AgLi electrodes. (f) Electrochemical performance of NPAgLi anodes. (g) SEM of AgLi composite anode after lithium delithiation [37] (Reproduced with permission. Copyright 2021, Wiley-VCH).
Fig. 12. (a) Schematic of the Ag@WSe2-LLZO interface under cycling. (b) XPS spectra of Ag 3d for the Ag@WSe2-LLZO surface before and after cycling. (c) Cross-section SEM of the Li/Ag@WSe2-LLZO interface before and (d) after 600 cycles. (e) Cycling performance of Ag@WSe2-LLZO | LFP cell [40] (Reproduced with permission. Copyright 2020, Elsevier).
[1] | D. Lindley, Nat. Energy 463 (2010) 18-20. |
[2] |
F.X. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569-1614.
DOI URL |
[3] |
E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, F. Wu, Chem. Rev. 120 (2020) 7020-7063.
DOI URL |
[4] |
Y.X. Li, X.L. Zhai, Y. Liu, H.J. Wei, J.Q. Ma, M. Chen, X.M. Liu, W.H. Zhang, G. X. Wang, F.Z. Ren, S.Z. Wei, Front. Mater. 7 (2020) 105.
DOI URL |
[5] |
Q. Guo, C.Y. Wang, T. Hayat, A. Alsaedi, J.X. Yao, Z.A. Tan, Rare Met. 40 (2021) 2763-2777.
DOI URL |
[6] | Y.L. Sui, J. Zhou, X.W. Wang, L. Wu, S.K. Zhong, Y.G. Li, Mater. Today 42 (2021) 117-136. |
[7] | Y. Gogotsi, Nat. Energy 509 (2014) 568-570. |
[8] | M.J. Yuan, X.T. Guo, Y. Liu, H. Pang, J. Mater. Chem. A 7 (2019) 22123-22147. |
[9] |
F. Tao, Y. Liu, X.Y. Ren, A.J. Jiang, H.J. Wei, X.L. Zhai, F. Wang, H.R. Stock, S.F. Wen, F.Z. Ren, J. Alloy. Compd. 873 (2021) 159742.
DOI URL |
[10] | J.Y. Li, H.W. Zhang, L.Q. Luo, H. Li, J.Y. He, H.L. Zu, L. Liu, H. Liu, F.Y. Wang, J.J. Song, J. Mater. Chem. A 9 (2021) 2205-2213. |
[11] |
J. Li, H. Huang, X.X. Cao, H.H. Wu, K.M. Pan, Q.B. Zhang, N.T. Wu, X.M. Liu, Chem. Eng. J. 416 (2021) 127677.
DOI URL |
[12] |
X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou, J.H. Wang, B.T. Zhao, M. L. Liu, Z. Lin, K. Huang, Energy Environ. Sci. 10 (2017) 1757-1763.
DOI URL |
[13] |
Y. J. Miao, Y. F. Zheng, F. Tao, Z. J. Chen, Y. Xiong, F. Z Ren, Y. Liu, Chin Chem Lett 33 (2022), doi: 10.1016/j.cclet.2022.01.014.
DOI |
[14] |
M.M. Zhang, J.Y. Chen, H. Li, C.R. Wang, Rare Met. 40 (2021) 249-271.
DOI URL |
[15] | Y. Liu, Y. Wang, F. Wang, Z.X. Lei, W.H. Zhang, K.M. Pan, J. Liu, M. Chen, G. X. Wang, F.Z. Ren, S.Z. Wei, Nanomaterials 9 (2019) 1689. |
[16] |
X.L. Gao, X.H. Liu, W.L. Xie, L.S. Zhang, S.C. Yang, Rare Met. 40 (2021) 3038-3048.
DOI URL |
[17] | X. T. Guo, Y. Z. Zhang, F. Zhang, Q. Li, D. H. Anjum, H. F. Liang, Y. Liu, C. S Liu, H. N. Alshareef, H. Pang, J. Mater. Chem. A 7 (2019) 15969-16974. |
[18] |
L. M. Zhu, Z. Li, G. C. Ding, L. L. Xie, Y. X. Miao, X. Y. Cao, J. Mater. Sci. Technol. 89 (2021) 68-87.
DOI URL |
[19] | J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, Nat. Energy 4 (2019) 180-186. |
[20] |
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569-1614.
DOI URL |
[21] | X.W. Wang, C.H. Yang, X.H. Xiong, G.L. Chen, M.Z. Huang, J.H. Wang, Y. Liu, M. L. Liu, K. Huang, Energy Storage Mater. 16 (2019) 344-353. |
[22] |
C.H. Yang, X. Ou, X.H. Xiong, F.H. Zheng, R.Z. Hu, Y. Chen, M.L. Liu, K.V. Huang, Energy Environ. Sci. 10 (2017) 107-113.
DOI URL |
[23] | Y.Z. Chen, A. Elangovan, D.L. Zeng, Y.F. Zhang, H.Z. Ke, J. Li, Y.B. Sun, H.S. Cheng, Adv. Funct. Mater. 30 (2020) 19064 4 4. |
[24] |
F. Wang, Y. Liu, Y.F. Zhao, Y. Wang, Z.J. Wang, W.H. Zhang, F.Z. Ren, Appl. Sci. 8 (2018) 22 Basel.
DOI URL |
[25] |
R. Wang, W. Cui, F. Chu, F. Wu, J. Energy. Chem. 48 (2020) 145-159.
DOI URL |
[26] | J.W. Li, Z. Kong, X.X. Liu, B.C. Zheng, Q.H. Fan, E. Garratt, T. Schuelke, K. L. Wang, H. Xu, H. Jin, Infomat 3 (2021) 1333-1363. |
[27] |
G. Wang, C. Chen, Y.H. Chen, X.W. Kang, C.H. Yang, F. Wang, Y. Liu, X.H. Xiong, Angew. Chem. Int. Ed. 59 (2020) 2055-2060.
DOI URL |
[28] | Y.Y. Zhu, Y. Zhang, P. Das, Z.S. Wu, Energy Fuels 35 (2021) 12902-12920. |
[29] |
Z.J. Wang, Y.Y. Wang, C. Wu, W.K. Pang, J.F. Mao, Z.P. Guo, Chem. Sci. 12 (2021) 8945-8966.
DOI URL |
[30] |
M.D. Gao, H. Li, L. Xu, Q. Xue, X.N. Wang, Y. Bai, C. Wu, J. Energy. Chem. 59 (2021) 666-687.
DOI URL |
[31] | L.N. Wu, J. Peng, F.M. Han, Y.K. Sun, T. Sheng, Y.Y. Li, Y.Z. Zhou, L. Huang, J.T. Li, S.G. Sun, J. Mater. Chem. A 8 (2020) 4300-4307. |
[32] |
Z.F. Zuo, L.B. Zhuang, J.Z. Xu, Y.M. Shi, C.L. Su, P.C. Lian, B.B. Tian, Front. Chem. 8 (2020) 109.
DOI URL |
[33] | C.H. Zhang, T. Jin, G. Cheng, S. Yuan, Z.J. Sun, N.W. Li, L. Yu, S.J. Ding, J. Mater. Chem. A 9 (2021) 13388-13401. |
[34] | Z.Y. Han, C. Zhang, Q.W. Lin, Y.B. Zhang, Y.Q. Deng, J.W. Han, D.C. Wu, F.Y. Kang, Q.H. Yang, W. Lv, Small Methods 5 (2021) 2001035. |
[35] |
C. Jiang, C. Ma, F. Yang, X.H. Cai, Y.J. Liu, X.Y. Tao, Mater. Chem. Front. 5 (2021) 5194-5210.
DOI URL |
[36] | Y. Gu, W.W. Wang, J.W. Yan, D.Y. Wu, Q.F. Dong, B.W. Mao, Curr. Opin. Elec- trochem. 26 (2021) 100671. |
[37] |
X. Wu, W. Zhang, N.Q. Wu, S.S. Pang, Y. Ding, G. He, Adv. Energy Mater. 11 (2021) 2003082.
DOI URL |
[38] |
J.M. Wang, B.C. Ge, H. Li, M. Yang, J. Wang, D. Liu, C. Fernandez, X.B. Chen, Q. M. Peng, Chem. Eng. J. 420 (2021) 129739.
DOI URL |
[39] | Q.Q. Lu, Y.L. Jie, X.Q. Meng, A. Omar, D. Mikhailova, R.G. Cao, S.H. Jiao, Y. Lu, Y. L. Xu, Carbon Energy 3 (2021) 957-975. |
[40] |
Z.H. Sun, Y.Q. Lai, N. Lv, L.X. Jiang, M. Jia, J. Li, W.Z. Bao, F.Y. Liu, J. Power Sources 468 (2020) 228379.
DOI URL |
[41] |
Y.L. Zhao, L.P. Wang, J. Zou, Q.W. Ran, L. Li, P.Y. Chen, H.L. Yu, J. Gao, X.B. Niu, J. Energy. Chem. 65 (2022) 666-673.
DOI URL |
[42] |
H.Y. Song, X.L. Chen, G.L. Zheng, X.J. Yu, S.F. Jiang, Z.M. Cui, L. Du, S.J. Liao, ACS Appl. Mater. Interfaces 11 (2019) 18361-18367.
DOI URL |
[43] | M.L. Meyerson, P.E. Papa, A. Heller, C.B. Mullins, ACS Nano 15 (2021) 29-46. |
[44] |
Z.P. Wen, D.Z. Wu, H. Li, Y.X. Lin, H. Li, Y. Yang, J.B. Zhao, J. Energy. Chem. 54 (2021) 282-290.
DOI URL |
[45] |
Q.K. Zhang, S. Liu, Y.T. Lu, L.D. Xing, W.S. Li, J. Energy. Chem. 58 (2021) 198-206.
DOI URL |
[46] |
X.F. Rao, Y.T. Lou, S.W. Zhong, L. Wang, B.B. Li, Y. Xiao, W. Peng, X.H. Zhong, J. C. Huang, J. Electroanal. Chem. 897 (2021) 115499.
DOI URL |
[47] |
C.P. Yang, Y.G. Yao, S.M. He, H. Xie, E. Hitz, L.B. Hu, Adv. Mater. 29 (2017) 1702714.
DOI URL |
[48] | X.S. Wang, Z.H. Pan, Y. Wu, G. Xu, X.W. Zheng, Y.C. Qiu, M.N. Liu, Y.G. Zhang, W.S. Li, Nanoscale 10 (2018) 16562-16567. |
[49] |
Z. Hou, Y.K. Yu, W.H. Wang, X.X. Zhao, Q. Di, Q.W. Chen, W.H. Chen, Y.L. Liu, Z.W. Quan, ACS Appl. Mater. Interfaces 11 (2019) 8148-8154.
DOI URL |
[50] | K. Lu, H.P. Xu, H.Y. He, S.Y. Gao, X. Li, C. Zheng, T. Xu, Y.W. Cheng, J. Mater. Chem. A 8 (2020) 10363-10369. |
[51] |
H. Wang, P. Hu, X.T. Liu, Y. Shen, L.X. Yuan, Z. Li, Y.H. Huang, Adv. Sci. 8 (2021) 2100684.
DOI URL |
[52] |
M.H. Braga, A. Debski, S. Terlicka, W. Gasior, A. Goral, J. Alloy. Compd. 817 (2020) 152811.
DOI URL |
[53] | T.C. Liu, Q.Y. Hu, X.H. Li, L. Tan, G.C. Yan, Z.X. Wang, H.J. Guo, Y. Liu, Y.P. Wu, J. X. Wang, J. Mater. Chem. A 7 (2019) 20911-20918. |
[54] | R. Zhang, X. Chen, X. Shen, X.Q. Zhang, X.R. Chen, X.B. Cheng, C. Yan, C. Z. Zhao, Q. Zhang, Joule 2 (2018) 764-777. |
[55] | K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 1 (2016) 16010. |
[56] |
R. Zhan, X.R. Chen, X. Che, X.B. Chen, X.Q. Zhang, C. Yan, Q. Zhan, Angew. Chem. Int. Ed. 56 (2017) 7764-7768.
DOI PMID |
[57] |
P. Xue, S.R. Liu, X.L. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y.S. Chen, J.J. Liang, Adv. Mater. 30 (2018) 1804165.
DOI URL |
[58] |
H. Wang, J.Y. Wu, L.X. Yuan, Z. Li, Y.H. Huang, ACS Appl. Mater. Interfaces 12 (2020) 28337-28344.
DOI URL |
[59] | S.Q. Cui, P.B. Zhai, W.W. Yang, Y. Wei, J. Xiao, L.B. Deng, Y.J. Gong, Small 16 (2020) 1905620. |
[60] | J. Yun, E.S. Won, H.S. Shin, K.N. Jung, J. Lee, J. Mater. Chem. A 7 (2019) 23208-23215. |
[61] |
Y.Z. Lu, J.S. Wang, Y. Chen, X.Y. Zheng, H.R. Yao, S.J. Mathur, Z.S. Hong, Adv. Funct. Mater. 31 (2020) 2009605.
DOI URL |
[62] |
S.Y. Yuan, J.W. Bao, C.H. Li, Y.Y. Xia, D.G. Truhlar, Y.G. Wang, ACS Appl. Mater. Interfaces 11 (2019) 10616-10623.
DOI URL |
[63] |
Z. Peng, J.H. Song, L.Y. Huai, H.P. Jia, B.W. Xiao, L.F. Zou, G.M. Zhu, A. Martinez, S. Roy, V. Murugesan, H.K. Lee, X.D. Ren, Q.Y. Li, B. Liu, X.L. Li, D.Y. Wang, W. Xu, J.G. Zhang, Adv. Energy Mater. 9 (2019) 1901764.
DOI URL |
[64] | F.H. Guo, C. Wu, H. Chen, F.P. Zhong, X.P. Ai, H.X. Yang, J.F. Qian, Energy Stor- age Mater. 24 (2020) 635-643. |
[65] | H.H. Gan, S.Q. Li, Y. Zhang, J.R. Wang, Z.G. Xue, Eur. J. Inorg. Chem. 2021 ( 2021) 4639-4646. |
[66] |
M. Liu, N.P. Deng, J.G. Ju, L.Y. Wang, G. Wang, Y.L. Ma, W.M. Kang, J. Yan, ACS Appl. Mater. Interfaces 11 (2019) 17843-17852.
DOI URL |
[67] | L.T. Yu, Q.M. Su, B.Y. Li, W.Y. Liu, M. Zhang, S.K. Ding, G.H. Du, B.S. Xu, Elec- trochim. Acta 362 (2020) 137130. |
[68] |
R. Tian, S.L. Wan, L. Guan, H.N. Duan, Y.P. Guo, H. Li, H.Z. Liu, Electrochim. Acta 292 (2018) 227-233.
DOI URL |
[69] |
H. Cheng, H. Jin, H.Y. Liu, N. Cai, C. Gao, P. Zhang, M. Wang, J. Electroanal. Chem. 878 (2020) 114569.
DOI URL |
[70] |
Q.D. Sun, W. Zhai, G.M. Hou, J.K. Feng, L. Zhang, P.C. Si, S.R. Guo, L.J. Ci, ACS Sustain. Chem. Eng. 6 (2018) 15219-15227.
DOI URL |
[71] |
X.J. Qian, X.Q. Fan, Y.L. Peng, P. Xue, C.G. Sun, X.L. Shi, C. Lai, J.J. Liang, Adv. Funct. Mater. 31 (2020) 2008044.
DOI URL |
[72] | Y. Yang, M. Zhao, H.B. Geng, Y.F. Zhang, Y.X. Fang, C.C. Li, J.B. Zhao, Chem. Eur.J. 25 (2019) 5036-5042. |
[73] |
Y.J. Fang, S.L. Zhang, Z.P. Wu, D.Y. Luan, X.W. Lou, Sci. Adv. 7 (2021) eabg3626.
DOI URL |
[74] | Y. Jeon, J. Kim, H. Jang, J. Lee, M.G. Kim, N. Liu, H.K. Song, J. Mater. Chem. A 10 (2022) 1768-1779. |
[75] |
Y.F. Kong, Z. Ma, D.P. Zheng, C.H. Yang, J. Zheng, G.P. He, J.M. Nan, Mater. Lett. 251 (2019) 118-121.
DOI URL |
[76] |
H.F. Zhuang, P. Zhaoe, Y. Xu, Inorg. Chem. Front. 7 (2020) 897-904.
DOI URL |
[77] | J.X. Liu, H.S. Ma, Z.P. Wen, H.Y. Li, J. Yang, N.B. Pei, P. Zhang, J.B. Zhao, J. En- ergy. Chem. 64 (2022) 354-363. |
[78] |
C.Y. Lu, M. Tian, X.J. Zheng, C.H. Wei, M.H. Rummeli, P. Strasser, R.Z. Yang, Chem. Eng. J. 430 (2022) 132722.
DOI URL |
[79] |
T. Zhao, M.L. Wang, Y. Yao, F.Y. Yang, Y.A. Jiang, D.B. Mu, F. Wu, C.Z. Zhang, Electrochim. Acta 388 (2021) 138632.
DOI URL |
[80] | J. Yun, J. Moon, G.H. Eom, J. Moon, J.H. Kim, M.S. Park, J.W. Lee, S.X. Dou, Nano Energy 95 (2022) 106999. |
[81] | L. Li, H.Q. Fu, J.L. Yang, P.Y. Wang, H.Z. Zhang, X. Zhao, Z.T. Xiao, Z.H. Liu, Z.K. Kou, Z.B. Wang, D.P. He, J. Mater. Chem. A 10 (2022) 11659-11666. |
[82] |
Z.W. Zhu, Z.Y. Wang, S. Liu, G.R. Li, X.P. Gao, Electrochim. Acta 379 (2021) 138152.
DOI URL |
[83] | Y. Liu, S.B. Huang, B.Y. Wang, Y.S. Yang, G.P. Cao, Y.C. Xiong, H. Zhang, Sustain. Energy Fuels 3 (2019) 2995-2999. |
[84] |
H.L. Fan, C.H. Gao, Q.Y. Dong, B. Hong, Z. Fang, M.Y. Hu, Y.Q. Lai, J. Electroanal. Chem. 824 (2018) 175-180.
DOI URL |
[85] |
R.J. Zhu, C.Y. Zhu, N. Sheng, Z.H. Rao, Y. Aoki, H. Habazaki, Chem. Eng. J. 388 (2020) 124256.
DOI URL |
[86] |
M.G. Zhu, K.L. Xu, D.Y. Li, T. Xu, W. Sun, Y.C. Zhu, Y.T. Qian, ACS Appl. Mater. Interfaces 12 (2020) 38098-38105.
DOI URL |
[87] | Z.T. Wondimkun, W.A. Tegegne, S.K. Jiang, C.J. Huang, J.H. Bing, Energy. Stor- age Mater. 35 (2021) 334-344. |
[88] |
K.Y. Cho, S.H. Hong, J. Kwon, H.Y. Song, S. Kim, S. Jo, K. Eom, Appl. Surf. Sci. 554 (2021) 149578.
DOI URL |
[89] | L.L. Wu, W.W. Jiang, H.T. Zou, C.Z. Ye, J. Zhang, G.J. Xu, X.M. Li, Z.H. Yue, F.G. Sun, L. Zhou, J. Mater. Chem. A 9 (2021) 20748-20757. |
[90] |
X.Y. Wang, K.L. Luo, L.X. Xiong, T.P. Xiong, Z.D. Li, J. Sun, H.Y. He, C.Y. Ouyang, Z. Peng, Energy Environ. Mater. (2022), doi: 10.1002/eem2.12317.
DOI |
[91] |
X.M. Lu, T.C. Liu, Y. Wang, F.H. Du, Batter. Supercaps (2022), doi: 10.1002/batt. 202200114.
DOI |
[92] |
Q. Zhao, J.Y. Li, X. Chen, Y.Q. Zhang, J. Electro. Mater. 51 (2022) 4248-4256.
DOI URL |
[93] |
Y.L. Liu, Q.W. Li, Q.S. Yao, X.J. Zhou, W.W. Wang, K.J. Chen, Q.Q. Zhu, G. He, Chem. Comm. 58 (2022) 3158-3161.
DOI URL |
[94] |
C.L. Wei, Y. Tao, Y.L. An, Y. Tian, Y.C. Zhang, J.K. Feng, Y.T. Qian, Adv. Funct. Mater. 30 (2020) 2004613.
DOI URL |
[95] |
K.K. Tang, J. Xiao, X. Li, D.D. Wang, M.Q. Long, J. Chen, H. Gao, W.H. Chen, C. T. Liu, H. Liu, Front. Chem. 8 (2020) 595972.
DOI URL |
[96] |
G.L. Liu, J. Cui, R.J. Luo, Y. Liu, X.X. Huang, N.T. Wu, X.Y. Jin, H.P. Chen, S.Y. Tang, J.K. Kim, X.M. Liu, Appl. Surf. Sci. 469 (2019) 854-863.
DOI URL |
[97] |
C.J. Niu, H.L. Pan, W. Xu, J. Xiao, J.G. Zhang, L.L. Luo, C.M. Wang, D.H. Mei, J.S. Meng, X.P. Wang, Z. Liu, L.Q. Mai, J. Liu, Nat. Nanotechnol. 14 (2019) 594.
DOI URL |
[98] | R. Tian, R.H. Chen, Z.M. Xu, S.L. Wan, L. Guan, H.N. Duan, H. Li, H. Zhu, D. Sun, H.Z. Liu,Carbon 152 (2019) 503-510 N Y. |
[99] |
Z.L. Tan, J.X. Wei, Y. Liu, F.U. Zaman, W. Rehman, L.R. Hou, C.Z. Yuan, Rare Met. 41 (2021) 775-797.
DOI URL |
[100] |
X.H. Rui, Q.Y. Yan, M. Skyllas-Kazacos, T.M. Lim, J. Power Sources 258 (2014) 19-38.
DOI URL |
[101] |
Y. Liu, H.J. Wei, X.L. Zhai, F. Wang, X.Y. Ren, Y. Xiong, O. Akiyoshi, K.M. Pan, F.Z. Ren, S.Z. Wei, Mater. Des. 211 (2021) 110171.
DOI URL |
[102] | Q. Zhao, X.G. Hao, S.M. Su, J.B. Ma, Y. Hu, Y. Liu, F.Y. Kang, Y.B. He, J. Mater. Chem. A 7 (2019) 15871-15879. |
[103] | X.D. Ma, X.H. Xiong, P.J. Zou, W.Z. Liu, F. Wang, L.W. Liang, Y. Liu, C.Z. Yuan, Z. Lin, Small 15 (2019) 1903259. |
[104] |
K.X. Yu, J. Qian, F.J. Wang, X.M. Guo, L. Li, F. Wu, R.J. Chen, ACS Appl. Energy Mater. 4 (2021) 11878-11885.
DOI URL |
[105] |
F. Wang, Y. Liu, H. J. Wei, G. X. Wang, F. Z. Ren, X. M. Liu, M. Chen, A. A. Volinsky, S. Z. Wei, Y. B. He, J. Alloys Compd. 839 (2020) 155614.
DOI URL |
[106] | D. Sui, M. J. Chang, Z. X. Peng, C. L. Li, X. T. He, Y. L. Yang, Y. Liu, Y. H. Lu, Nanomaterials 11 (2021) 2771. |
[107] | Y.G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-. S. Ko, T. Shi- ratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 5 (2020) 299-308. |
[108] |
J. Li, J.J. Wang, Y. Liu, C.Z. Yuan, G.L. Liu, N.T. Wu, X.M. Liu, Catal. Sci. Technol. 12 (2022) 4498-4510.
DOI URL |
[109] | C.L. Wei, H.F. Fei, Y.L. An, Y. Tao, J.K. Feng, Y.T. Qian, J. Mater. Chem. A 7 (2019) 18861-18870. |
[110] |
Y. Liu, S.B. Huang, Q.Q. Meng, Y.C. Fan, B.Y. Wang, Y.S. Yang, G.P. Cao, H. Zhang, J. Alloy. Compd. 885 (2021) 160882.
DOI URL |
[111] |
W. Shin, A. Manthiram, ACS Appl. Mater. Interfaces 14 (2022) 17454-17460.
DOI URL |
[112] | N. Mubarak, M. Ihsan-Ul-Haq, H. Huang, J. Cui, S.S. Yao, A. Susca, J.X. Wu, M. Y. Wang, X.H. Zhang, B.L. Huang, J.K. Kim, J. Mater. Chem. A 8 (2020) 10269-10282. |
[113] |
F. Wang, Y. Liu, H.J. Wei, T.F. Li, X.H. Xiong, S.Z. Wei, F.Z. Ren, A. A. Volinsky, Rare Met. 40 (2021) 448-470.
DOI URL |
[114] |
Y.Y. Wang, Z.J. Wang, D.N. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B.H. Li, F.Y. Kang, Y.B. He, ACS Appl. Mater. Interfaces 10 (2018) 20244-20249.
DOI URL |
[115] | J. Duan, W. Wu, A.M. Nolan, T. Wang, J.Y. Wen, C.C. Hu, Y.F. Mo, W. Luo, Y. Huang, Adv. Mater. 3 (2019) 1807243. |
[116] |
S.S. Li, Y. Huang, W.H. Ren, X. Li, M.S. Wang, H.J. Cao, Chem. Eng. J. 422 (2021) 129911.
DOI URL |
[117] |
F. Tao, Y. Liu, X.Y. Ren, J. Wang, Y.Z. Zhou, Y.J. Miao, F.Z. Ren, S.Z. Wei, J.M. Ma, J. Energy. Chem. 66 (2022) 397-412.
DOI URL |
[118] |
H.Q. Tang, Z.Y. Tang, C.Q. Du, F.C. Qie, J.T. Zhu, Electrochim. Acta 120 (2014) 187-192.
DOI URL |
[119] |
X.G. Hao, Q. Zhao, S.M. Su, S.Q. Zhang, J.B. Ma, L. Shen, Q.P. Yu, L. Zhao, Y. Liu, F.Y. Kang, Y.B. He, Adv. Energy Mater. 9 (2019) 1901604.
DOI URL |
[120] | L.F. Peng, H.T. Ren, J.Z. Zhang, S.Q. Chen, C. Yu, X.F. Miao, Z.Q. Zhang, Z.Y. He, M. Yu, L. Zhang, S.J. Cheng, J. Xie, Energy Storage Mater. 43 (2021) 53-61. |
[121] |
L. Xu, Y. Lu, C.Z. Zhao, H. Yuan, G.L. Zhu, L.P. Hou, Q. Zhang, J.Q. Huang, Adv. Energy Mater. 11 (2020) 2002360.
DOI URL |
[122] |
L.F. Peng, C. Yu, Z.Q. Zhang, H.T. Ren, J.Z. Zhang, Z.Y. He, M. Yu, L. Zhang, S.J. Cheng, J. Xie, Chem. Eng. J. 430 (2022) 132896.
DOI URL |
[123] |
X.Z. Liu, L. Ding, Y.Z. Liu, L.P. Xiong, J. Chen, X.L. Luo, Rare Met. 40 (2021) 2301-2306.
DOI URL |
[124] |
M. Zheng, H. Tang, Q. Hu, S. Zheng, L. Li, J. Xu, H. Pang, Adv. Funct. Mater. 28 (2018) 1707500.
DOI URL |
[125] |
C.W. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y.F. Mo, V. Thangadurai, L.B. Hu, Chem. Rev. 120 (2020) 4257-4300.
DOI URL |
[126] | H.C. Yang, Q.Y. Liu, Y.Z. Wang, Z.T. Ma, P. Tang, X.Y. Zhang, H.M. Cheng, Z.H. Sun, F. Li, Small 18 (2022) 2202349. |
[1] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[2] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[3] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[4] | Cailing Song, Wen Zhang, Qianwen Jin, Yan Zhao, Yongguang Zhang, Xin Wang, Zhumabay Bakenov. Oxidized Nb2C MXene as catalysts for lithium-sulfur batteries: Mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides [J]. J. Mater. Sci. Technol., 2022, 119(0): 45-52. |
[5] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[6] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[7] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[8] | Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review [J]. J. Mater. Sci. Technol., 2021, 91(0): 168-177. |
[9] | Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 68-87. |
[10] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[11] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[12] | Chongjia Zhu, Zhiqiu Wu, Jian Xie, Zhen Chen, Jian Tu, Gaoshao Cao, Xinbing Zhao. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode [J]. J. Mater. Sci. Technol., 2018, 34(9): 1544-1549. |
[13] | Jun-Rui Wang, Feng Wan, Qiu-Feng Lü, Fei Chen, Qilang Lin. Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance [J]. J. Mater. Sci. Technol., 2018, 34(10): 1959-1968. |
[14] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
[15] | Peiyi Zhu, Shuangyu Liu, Jian Xie, Shichao Zhang, Gaoshao Cao, Xinbing Zhao. Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance [J]. J. Mater. Sci. Technol., 2014, 30(11): 1078-1083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||