J. Mater. Sci. Technol. ›› 2022, Vol. 124: 135-140.DOI: 10.1016/j.jmst.2021.11.081
• Letter • Previous Articles Next Articles
Yi Xionga,*(), Phani S. Karamcheda, Chi-Toan Nguyenb, David M.Collinsc, Christopher M.Magazzenia, Edmund Tarletond,a, Angus J.Wilkinsona
Revised:
2021-11-15
Published:
2022-10-10
Online:
2022-09-27
Contact:
Yi Xiong
About author:
∗E-mail address: yi.xiong@materials.ox.ac.uk (Y. Xiong)Yi Xiong, Phani S. Karamched, Chi-Toan Nguyen, David M.Collins, Christopher M.Magazzeni, Edmund Tarleton, Angus J.Wilkinson. Macroscopic analysis of time dependent plasticity in Ti alloys[J]. J. Mater. Sci. Technol., 2022, 124: 135-140.
Empty Cell | Al | V | Sn | Zr | Mo | Fe | O | N | Others total | Microstructure | β phase content | Grain size (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP-Ti grade 1 | <0.05 | 0.11 | <0.05 | <0.05 | <0.05 | <0.05 | 0.077 | 0.02 | 0.2 | Pure α | 0% | 30 |
CP-Ti grade 4 | <0.05 | 0.15 | <0.05 | <0.05 | <0.05 | 0.055 | 0.32 | 0.006 | 0.4 | Pure α | 0% | 17 |
Ti64 α | 6.74 | 3.98 | <0.05 | <0.05 | <0.05 | <0.05 | 0.218 | 0.001 | 0.2 | Primary α | 6% | 15 |
Ti64 Bimodal | 6.63 | 3.87 | <0.05 | <0.05 | <0.05 | <0.05 | 0.191 | 0.002 | 0.3 | α+β | 18% | 8 |
Ti6242 | 6.21 | 0.28 | 1.27 | 4.21 | 1.86 | <0.05 | 0.079 | <0.001 | 0.4 | Primary α | 10% | 12 |
Ti6246 | 5.98 | 0.15 | 0.87 | 4.24 | 5.35 | <0.05 | 0.157 | <0.001 | 0.3 | α+β | 60% | 6 |
Table 1. Materials composition (in wt.%) and microstructure information.
Empty Cell | Al | V | Sn | Zr | Mo | Fe | O | N | Others total | Microstructure | β phase content | Grain size (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP-Ti grade 1 | <0.05 | 0.11 | <0.05 | <0.05 | <0.05 | <0.05 | 0.077 | 0.02 | 0.2 | Pure α | 0% | 30 |
CP-Ti grade 4 | <0.05 | 0.15 | <0.05 | <0.05 | <0.05 | 0.055 | 0.32 | 0.006 | 0.4 | Pure α | 0% | 17 |
Ti64 α | 6.74 | 3.98 | <0.05 | <0.05 | <0.05 | <0.05 | 0.218 | 0.001 | 0.2 | Primary α | 6% | 15 |
Ti64 Bimodal | 6.63 | 3.87 | <0.05 | <0.05 | <0.05 | <0.05 | 0.191 | 0.002 | 0.3 | α+β | 18% | 8 |
Ti6242 | 6.21 | 0.28 | 1.27 | 4.21 | 1.86 | <0.05 | 0.079 | <0.001 | 0.4 | Primary α | 10% | 12 |
Ti6246 | 5.98 | 0.15 | 0.87 | 4.24 | 5.35 | <0.05 | 0.157 | <0.001 | 0.3 | α+β | 60% | 6 |
Fig. 1. Microstructures of the raw materials: (a) EBSD map of the CP-Ti grade 1 alloy (IPF map in normal direction of the raw material); (b) EBSD map of the CP-Ti grade 4 alloy (IPF map in normal direction of the raw material); SE images of the (c) Ti64 α alloy; (d) Ti64 Bimodal alloy; (e) Ti6242 alloy and (f) Ti6246 alloy; Pole figures of the raw material with a 10° width used for contours plotting calculation: (g) CP-Ti grade 1 alloy; (h) CP-Ti grade 4 alloy; (i) Ti64 α alloy and (j) Ti6242 alloy.
ρ | 5μm-2 |
---|---|
b | 0.295 nm |
ν | 1011 Hz |
kB | 1.38×10-23 JK-1 |
Table 2. Values of the fixed parameters in the slip law [21], [22], [23], [24], [25].
ρ | 5μm-2 |
---|---|
b | 0.295 nm |
ν | 1011 Hz |
kB | 1.38×10-23 JK-1 |
Fig. 3. (a) A fitted stress relaxation curve (Ti64 α at room temperature, as an example). (b) Thermal activation energy, ΔF and (c) Activation volume, ΔV (d) Critical stress, σc, as a function of temperature for the 6 alloys; (e) Contribution of the three key parameters to the form of the plastic strain rate when the critical stress is exceeded by 1 MPa (low stress condition) and (f) 50 MPa (high stress condition).
Fig. 4. (a) Fitting a straight line to the stress vs. strain rate on a log scale, the gradient represents the strain rate sensitivity exponent m (Ti64 α at room temperature as an example); (b) Strain rate sensitivity vs. Temperatures for the six different alloys; (c) Percentage of stress relaxed vs. Temperatures for the six different alloys.
Empty Cell | Change in ρ | ΔV(b3) | ΔF(10-20 J) | σc(MPa) |
---|---|---|---|---|
RT | ρ | 11.71 | 10.28 | 871 |
ρ+40% | 11.86 | 10.42 | 873 | |
ρ-40% | 11.82 | 10.11 | 868 | |
75 ∘C | ρ | 18.33 | 12.42 | 658 |
ρ+40% | 18.02 | 12.58 | 656 | |
ρ-40% | 17.71 | 12.27 | 655 | |
145 ∘C | ρ | 34.30 | 15.62 | 562 |
ρ+40% | 34.87 | 15.74 | 564 | |
ρ-40% | 34.50 | 15.46 | 558 | |
250 ∘C | ρ | 85.05 | 21.02 | 560 |
ρ+40% | 84.99 | 21.17 | 567 | |
ρ-40% | 86.27 | 20.90 | 560 |
Table A1. Sensitivity of the three fitted parameters (ΔV, ΔF and σc) to the change of ρ by ±40%. Using the Ti64 α samples as examples.
Empty Cell | Change in ρ | ΔV(b3) | ΔF(10-20 J) | σc(MPa) |
---|---|---|---|---|
RT | ρ | 11.71 | 10.28 | 871 |
ρ+40% | 11.86 | 10.42 | 873 | |
ρ-40% | 11.82 | 10.11 | 868 | |
75 ∘C | ρ | 18.33 | 12.42 | 658 |
ρ+40% | 18.02 | 12.58 | 656 | |
ρ-40% | 17.71 | 12.27 | 655 | |
145 ∘C | ρ | 34.30 | 15.62 | 562 |
ρ+40% | 34.87 | 15.74 | 564 | |
ρ-40% | 34.50 | 15.46 | 558 | |
250 ∘C | ρ | 85.05 | 21.02 | 560 |
ρ+40% | 84.99 | 21.17 | 567 | |
ρ-40% | 86.27 | 20.90 | 560 |
[1] | M. Bache, Int. J. Fatigue 25 (9) (2003) 1079-1087. Proceedings of the Interna- tional Conference on Fatigue Damage of Structural Materials IV |
[2] |
F.P.E. Dunne, D. Rugg, Fatigue Fract. Eng. Mater. Struct. 31 (11) (2008) 949-958.
DOI URL |
[3] |
Z. Zheng, D.S. Balint, F.P. Dunne, Acta Mater. 127 (2017) 43-53.
DOI URL |
[4] |
T. Neeraj, D.H. Hou, G. Daehn, M. Mills, Acta Mater. 48 (6) (2000) 1225-1238.
DOI URL |
[5] |
H. Conrad, Prog. Mater. Sci. 26 (2) (1981) 123-403.
DOI URL |
[6] |
H. Conrad, Can. J. Phys. 45 (2011) 581-590.
DOI URL |
[7] |
Z. Lei, P. Gao, X. Wang, M. Zhan, H. Li, J. Mater. Sci. Technol. 86 (2021) 77-90.
DOI URL |
[8] |
Z. Zhang, J. Fan, R. Li, H. Kou, Z. Chen, Q. Wang, H. Zhang, J. Wang, Q. Gao, J. Li, J. Mater. Sci. Technol. 75 (2021) 265-275.
DOI URL |
[9] |
F. Dunne, D. Rugg, A. Walker, Int. J. Plast. 23 (6) (2007) 1061-1083.
DOI URL |
[10] |
V. Hasija, S. Ghosh, M.J. Mills, D.S. Joseph, Acta Mater. 51 (15) (2003) 4533-4549.
DOI URL |
[11] |
J. Qiu, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, R. Yang, Metall. Mater. Trans. A 45 (13) (2014) 6075-6087.
DOI URL |
[12] | G. Lütjering, J. Williams, Engineering Materials and Processes, Springer, 2003. https://books.google.co.uk/books?id=GwI9ul_wAegC |
[13] | Z. Zhang, M. Cuddihy, F. Dunne, Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2015) 20150214. |
[14] |
Y.T. Tang, N. D’Souza, B. Roebuck, P. Karamched, C. Panwisawas, D.M. Collins, Acta Mater. 203 (2021) 116468.
DOI URL |
[15] |
B. Roebuck, D. Cox, R. Reed, Scr. Mater. 44 (2001) 917-921.
DOI URL |
[16] |
S. Sulzer, E. Alabort, A. Németh, B. Roebuck, R. Reed, Metall. Mater. Trans. A 49 (2018) 4214-4235.
DOI URL |
[17] |
Y. Xiong, P.S. Karamched, C.-T. Nguyen, D.M. Collins, C.M. Magazzeni, E. Tar- leton, A.J. Wilkinson, Acta Mater. 199 (2020) 561-577.
DOI URL |
[18] |
H. Altenbach, K. Naumenko, Y. Gorash, Int. J. Mod. Phys. B 22 (31n32) (2008) 5413-5418.
DOI URL |
[19] |
V. Kalyanasundaram, S.R. Holdsworth, Trans. Indian Inst. Met. 69 (2) (2016) 573-578.
DOI URL |
[20] |
Y. Wang, M. Spindler, C. Truman, D. Smith, Mater. Des. 95 (2016) 656-668.
DOI URL |
[21] |
Z. Zhang, T.S. Jun, T.B. Britton, F.P. Dunne, Acta Mater. 118 (2016) 317-330.
DOI URL |
[22] |
Z. Zhang, F.P. Dunne, J. Mech. Phys. Solids 103 (2017) 199-220.
DOI URL |
[23] |
P.J. Ashton, T.S. Jun, Z. Zhang, T.B. Britton, A.M. Harte, S.B. Leen, F.P. Dunne, Int. J. Fatigue 100 (2017) 377-387.
DOI URL |
[24] | Y. Xiong, P.S. Karamched, C.T. Nguyen, D.M. Collins, N. Grilli, C.M. Magazzeni, E. Tarleton, A.J. Wilkinson, Acta Mater. (2021) 116937. |
[25] |
M. Cuddihy, A. Stapleton, S. Williams, F. Dunne, Int. J. Fatigue 97 (2017) 177-189.
DOI URL |
[26] |
J. Stringer, Acta Metall. 8 (11) (1960) 758-766.
DOI URL |
[27] | J. Boyle, J. Spence, Stress Analysis for Creep, Elsevier Science, 2013. https://books.google.co.uk/books?id=3b38BAAAQBAJ |
[28] |
M. Tanaka, K. Higashida, Philos. Mag. 96 (19) (2016) 1979-1992.
DOI URL |
[29] |
Q. Yu, L. Qi, T. Tsuru, R. Traylor, D. Rugg, J.W. Morris, M. Asta, D.C. Chrzan, A. M. Minor, Science 347 (6222) (2015) 635-639.
DOI URL |
[30] | T.B. Britton, F.P.E. Dunne, A.J. Wilkinson, Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2178) (2015) 20140881. |
[31] |
D.R.N. Correa, F.B. Vicente, R.O. Araújo, M.L. Lourenço, P.A.B. Kuroda, M.A.R. Buzalaf, C.R. Grandini, J. Mater. Res. Technol. 4 (2) (2015) 180-185.
DOI URL |
[32] |
A. Sarkar, J.K. Chakravartty, Metall. Mater. Trans. A 46 (12) (2015) 5638-5643.
DOI URL |
[33] |
M. Fellah, N. Hezil, M. Abdul Samad, R. Djellabi, A. Montagne, A. Mejias, S. Kossman, A. Iost, A. Purnama, A. Obrosov, S. Weiss, J. Mater. Eng. Perform. 28 (10) (2019) 5988-5999.
DOI URL |
[34] |
Y. Wang, A. Hamza, E. Ma, Acta Mater. 54 (10) (2006) 2715-2726.
DOI URL |
[35] |
S. Cheng, J. Spencer, W. Milligan, Acta Mater. 51 (15) (2003) 4505-4518.
DOI URL |
[36] |
A.G. Evans, R.D. Rawlings, Phys. Status Solidi B 34 (1) (1969) 9-31.
DOI URL |
[37] |
T.S. Jun, Z. Zhang, G. Sernicola, F.P. Dunne, T.B. Britton, Acta Mater. 107 (2016) 298-309.
DOI URL |
[38] |
T.S. Jun, D.E. Armstrong, T.B. Britton, J. Alloy. Compd. 672 (2016) 282-291.
DOI URL |
[1] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[2] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[3] | H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
[4] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[5] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[6] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[7] | L.R. Zeng, L.M. Lei, X.M. Luo, G.P. Zhang. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 244-255. |
[8] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[9] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
[10] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[11] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
[12] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
[13] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
[14] | O.M. Ozkendir, E. Cengiz,E.Tlrasoglu, Mehmet Kaya, I.H. Karahan, N. Orhan. Traces of Defects in the Electronic Structure of Porous Ni–Ti Alloys [J]. J. Mater. Sci. Technol., 2013, 29(4): 344-348. |
[15] | Xifeng LI, Kaifeng ZHANG, Changli WANG, Wenbo HAN, Guofeng WANG. Microstructural and Microhardness Variation of Amorphous Fe78Si9B13 Alloy during Bend Stress Relaxation [J]. J Mater Sci Technol, 2007, 23(02): 253-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||