J. Mater. Sci. Technol. ›› 2022, Vol. 124: 141-149.DOI: 10.1016/j.jmst.2021.12.075
• Research Article • Previous Articles Next Articles
Chao Liua,b, Reynier I. Revillac, Xuan Lia, Zaihao Jianga, Shufeng Yangd,*(), Zhongyu Cuie, Dawei Zhanga,b, Herman Terryna,c, Xiaogang Lia,b
Received:
2021-10-24
Revised:
2021-11-25
Accepted:
2021-12-06
Published:
2022-10-10
Online:
2022-03-25
Contact:
Shufeng Yang
About author:
∗E-mail address: yangshufeng@ustb.edu.cn (S. Yang).Chao Liu, Reynier I. Revilla, Xuan Li, Zaihao Jiang, Shufeng Yang, Zhongyu Cui, Dawei Zhang, Herman Terryn, Xiaogang Li. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel[J]. J. Mater. Sci. Technol., 2022, 124: 141-149.
C | Si | Mn | P | S | Cr | Ni | Cu |
---|---|---|---|---|---|---|---|
0.114 | 0.203 | 1.056 | 0.0076 | 0.002 | 0.462 | 1.185 | 0.016 |
Al | Ti | Mo | V | Ca | O | N | Fe |
0.038 | 0.011 | 0.484 | 0.033 | 0.0017 | 0.0012 | 0.0035 | Bal. |
Table 1. Chemical composition of E690 steel (wt.%).
C | Si | Mn | P | S | Cr | Ni | Cu |
---|---|---|---|---|---|---|---|
0.114 | 0.203 | 1.056 | 0.0076 | 0.002 | 0.462 | 1.185 | 0.016 |
Al | Ti | Mo | V | Ca | O | N | Fe |
0.038 | 0.011 | 0.484 | 0.033 | 0.0017 | 0.0012 | 0.0035 | Bal. |
Fig. 2. (a) Morphology and DES maps of CaS·xMgO·yAl2O3·TiN in the polished specimen, (b) AFM topography (c) SKPFM maps, (d) CSAFM maps of the same area in (a); (e-g) the strip profile analyses for the selected inclusions.
Chemical reaction | ΔGf° (kJ/mol) |
---|---|
| -203.92 |
| -444.10 |
| - 53.60 |
| -59.90 |
| -1852.12 |
| + 62.44 |
| +321.23 |
| -2.51 |
| -611.8 |
Table 2. Standard Gibbs free energies of possible reactions during inclusion dissolution at 298 K [28], [29], [30], [31], [32].
Chemical reaction | ΔGf° (kJ/mol) |
---|---|
| -203.92 |
| -444.10 |
| - 53.60 |
| -59.90 |
| -1852.12 |
| + 62.44 |
| +321.23 |
| -2.51 |
| -611.8 |
Fig. 5. (a) Secondary electron microscopy image and EDS result of TiN inclusion, TEM images and the SAD results of the TiN inclusion (b) and interface between TiN inclusion and SiO2 (c), (d) XPS spectra of TiO2 2p3/2 and TiO2 2p1/2 peaks of the passive films formed on pure Ti specimen, (e) AFM topography and CSAFM map of pure Ti specimen, and (f) line profile analyses for the selected area in (e).
Crystallographic | WF=LP-E-Fermi (eV) | Surface energy (J/m2) | Crystallographic | WF=LP-E-Fermi (eV) | Surface energy (J/m2) | ||
---|---|---|---|---|---|---|---|
CaS | 100 | 4.819 | 1.671 | TiO2 | 100 | 6.787 | 2.179 |
Empty Cell | 110 | 4.398 | 1.832 | 110 | 9.362 | 0.966 | |
Empty Cell | 111 | 8.755 | 2.492 | 111 | 6.501 | 1.636 | |
MgAl2O4 | 100 | 4.565 | 3.901 | Fe | 100 | 4.452 | 2.670 |
Empty Cell | 110 | 5.722 | 3.582 | 110 | 5.184 | 2.511 | |
Empty Cell | 111 | 8.693 | 3.019 | 111 | 4.480 | 2.857 | |
TiN | 100 | 2.928 | 1.294 | ||||
Empty Cell | 110 | 3.139 | 2.663 | ||||
Empty Cell | 111 | 6.770 | 3.417 |
Table 3. Work function and surface energy of CaS, xMgO·yAl2O3, TiN and Fe.
Crystallographic | WF=LP-E-Fermi (eV) | Surface energy (J/m2) | Crystallographic | WF=LP-E-Fermi (eV) | Surface energy (J/m2) | ||
---|---|---|---|---|---|---|---|
CaS | 100 | 4.819 | 1.671 | TiO2 | 100 | 6.787 | 2.179 |
Empty Cell | 110 | 4.398 | 1.832 | 110 | 9.362 | 0.966 | |
Empty Cell | 111 | 8.755 | 2.492 | 111 | 6.501 | 1.636 | |
MgAl2O4 | 100 | 4.565 | 3.901 | Fe | 100 | 4.452 | 2.670 |
Empty Cell | 110 | 5.722 | 3.582 | 110 | 5.184 | 2.511 | |
Empty Cell | 111 | 8.693 | 3.019 | 111 | 4.480 | 2.857 | |
TiN | 100 | 2.928 | 1.294 | ||||
Empty Cell | 110 | 3.139 | 2.663 | ||||
Empty Cell | 111 | 6.770 | 3.417 |
Compounds | Thermal expansion coefficient (× 10-6/°C) | Electrical volume resistance (Ω·cm at 20 °C) | Refs. |
---|---|---|---|
Al2O3 | 8.2 | 8 × 1015 | [ |
CaS | 14.7 | >1013 | [ |
MgO·Al2O3 | 8.4 | >1015 | [ |
TiN | 9.4 | 27 | [ |
Ti2O | 8.4 | 74 | [ |
Carbon steel | 10.8 | 1 × 10-5 | [ |
Table 4. Physical properties of different components in the inclusions and the carbon steel.
Compounds | Thermal expansion coefficient (× 10-6/°C) | Electrical volume resistance (Ω·cm at 20 °C) | Refs. |
---|---|---|---|
Al2O3 | 8.2 | 8 × 1015 | [ |
CaS | 14.7 | >1013 | [ |
MgO·Al2O3 | 8.4 | >1015 | [ |
TiN | 9.4 | 27 | [ |
Ti2O | 8.4 | 74 | [ |
Carbon steel | 10.8 | 1 × 10-5 | [ |
[1] |
B. Beidokhti, A.H. Koukabi, A. Dolati, Mater. Charact. 60 (2009) 225-233.
DOI URL |
[2] |
A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, E.V. Pereloma, Int. J. Hydrog. Energy 38 (2013) 2544-2556.
DOI URL |
[3] |
C. Liu, X. Li, R.I. Revilla, T. Sun, J. Zhao, D. Zhang, S. Yang, Z. Liu, X. Cheng, H. Terryn, X. Li, Corros. Sci. 179 (2021) 109150.
DOI URL |
[4] |
C. Liu, Z. Jiang, J. Zhao, X. Cheng, Z. Liu, D. Zhang, X. Li, Corros. Sci. 166 (2020) 108463.
DOI URL |
[5] |
T.Y. Jin, Y.F. Cheng, Corros. Sci. 53 (2011) 850-853.
DOI URL |
[6] |
I.J. Park, S.M. Lee, M. Kang, S. Lee, Y.K. Lee, J. Alloy. Compd. 619 (2015) 205-210.
DOI URL |
[7] |
W. Xue, Z. Li, K. Xiao, W. Yu, J. Song, J. Chen, C. Dong, X. Li, Corros. Sci. 163 (2020) 108232.
DOI URL |
[8] |
H. Su, S. Wei, Y. Liang, Y. Wang, B. Wang, Y. Yuan, J. Electroanal. Chem. 863 (2020) 114056.
DOI URL |
[9] |
Y. Hou, T. Li, G. Li, C. Cheng, Micron 130 (2020) 102820.
DOI URL |
[10] |
C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn, Corros. Sci. 138 (2018) 96-104.
DOI URL |
[11] |
C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Corros. Sci. 129 (2017) 82-90.
DOI URL |
[12] |
D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater. Sci. Technol. 35 (2019) 1499-1507.
DOI URL |
[13] |
G. Li, L. Wang, H. Wu, C. Liu, X. Wang, Z. Cui, Corros. Sci. 174 (2020) 108815.
DOI URL |
[14] |
R.S. Dutta, R. Tewari, P.K. De, Corros. Sci. 49 (2007) 303-318.
DOI URL |
[15] |
J. Tan, X. Wu, E.H. Han, W. Ke, X. Liu, F. Meng, X. Xu, Corros. Sci. 88 (2014) 349-359.
DOI URL |
[16] |
H. Chen, L. Lu, Y. Huang, X. Li, J. Mater. Res. Technol. 13 (2021) 13-24.
DOI URL |
[17] |
W. Wei, K. Wu, X. Zhang, J. Liu, P. Qiu, L. Cheng, J. Mater. Res. Technol. 9 (2020) 1412-1424.
DOI URL |
[18] | X.H. Li, F. Huang, J.Q. Wang, E.H. Han, K. Wei, J. Mater. Sci. Technol. 47 (2011) 847-852. |
[19] |
F. Meng, J. Wang, E.H. Han, W. Ke, Corros. Sci. 52 (2010) 927-932.
DOI URL |
[20] |
M.B. Leban, R. Tisu, Eng. Fail. Anal. 33 (2013) 430-438.
DOI URL |
[21] |
S.L. Yun, J.S. Kim, H.S. Kwon, J. Nucl. Mater. 336 (2005) 65-72.
DOI URL |
[22] |
Y. Ji, C. Dong, D. Kong, X. Li, J. Mater. Sci. Technol. 46 (2020) 145-155.
DOI URL |
[23] |
M. Iannuzzi, K.L. Vasanth, G.S. Frankel, J. Electrochem. Soc. 164 (2017) C488-C497.
DOI URL |
[24] |
V. Yakubov, M. Lin, A.A. Volinsky, L. Qiao, L. Guo, npj Mater. Degrad. 2 (2018) 1-4.
DOI URL |
[25] |
H. Ma, X.Q. Chen, R. Li, S. Wang, J. Dong, W. Ke, Acta Mater. 130 (2017) 137-146.
DOI URL |
[26] | R.I. Revilla, J. Liang, S. Godet, I.D. Graeve, J. Electrochem. Soc. 162 (2017) C27-C35. |
[27] |
N. Sathirachinda, R. Pettersson, S. Wessman, J. Pan, Corros. Sci. 52 (2010) 179-186.
DOI URL |
[28] |
B. Avasarala, P. Haldar, Electrochim. Acta 55 (2010) 9024-9034.
DOI URL |
[29] |
S.D. Chyou, H.C. Shih, T.T. Chen, Corros. Sci. 35 (1993) 337-347.
DOI URL |
[30] |
A.G. Tyurin, I.Y. Pyshmintsev, I.V. Kostitsyna, I.M. Zubkova, Prot. Met. 43 (2007) 34-44.
DOI URL |
[31] | M.W. Chase Jr, J. Phys. Chem. Ref Data Monogr. (1998). |
[32] |
C. Yue, S. Li, K. Ding, N. Zhong, Geochem. J. 40 (2006) 87-94.
DOI URL |
[33] |
Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Chem. Soc. Rev. 40 (2011) 4167-4185.
DOI URL |
[34] |
Y. Jin, M. Liu, C. Zhang, C. Leygraf, L. Wen, J. Pan, J. Electrochem. Soc. 164 (2017) C465-C473.
DOI URL |
[35] |
K. Tanaka, T. Mura, Metall. Trans. A 13 (1982) 117-123.
DOI URL |
[36] |
L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, Z. Cui, Corros. Sci. 147 (2019) 108-127.
DOI URL |
[37] |
H. Huang, H. Wang, J. Zhang, D. Yan, Appl. Phys. A 95 (2009) 125-130.
DOI URL |
[38] |
P. Liu, Q. Zhang, X. Li, J. Hu, F. Cao, J. Mater. Sci. Technol. 64 (2021) 99-113.
DOI URL |
[39] | R. Bäßler, Materials Handbook-A Concise Desktop Reference, Springer, 2020. |
[40] | P. Juvonen, Effects of Non-Metallic Inclusions On Fatigue Properties of Calcium Treated Steels, Ph.D. Thesis. Helsinki University of Technology, 2004. |
[41] | R. Riedel, Handbook of Ceramic Hard Materials, WILEY-VCH Verlag GmbH, 2000. |
[42] | D. Brooksbank, K. Andrews, in: Proceedings of the Production and Application of Clean Steels, 1972, pp. 186-198. |
[43] |
C. Leung, L. Van Vlack, Metall. Trans. A 12 (1981) 987-991.
DOI URL |
[44] |
D. Dwivedi, K. Lepková, T. Becker, RSC Adv. 7 (2017) 4580-4610.
DOI URL |
[45] | E. Rafiee, M. Farzam, M.A. Golozar, A. Ashrafi, ISRN Corros. 2013 (2013) 1-6, 921825. |
[46] |
C. Escrivà-Cerdán, S.W. Ooi, G.R. Joshi, R. Morana, H.K.D.H. Bhadeshia, R. Akid, Corros. Sci. 154 (2019) 36-48.
DOI URL |
[47] |
X. Guo, S. Gin, P. Lei, T. Yao, H. Liu, D.K. Schreiber, D. Ngo, G. Viswanathan, T. Li, S.H. Kim, J.D. Vienna, J.V. Ryan, J. Du, J. Lian, G.S. Frankel, Nat. Mater. 19 (2020) 310-316.
DOI URL |
[48] |
B. Munirathinam, R. Narayanan, L. Neelakantan, Thin Solid Films 598 (2016) 260-270.
DOI URL |
[49] | S.P. Harrington, T. Devine, ECS Trans. 16 (2009) 117-123. |
[50] |
Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, X. Li, Appl. Surf. Sci. 349 (2015) 746-756.
DOI URL |
[1] | Lin Pang, Zhengbin Wang, Yugui Zheng, Xueming Lai, Xu Han. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54(0): 95-104. |
[2] | Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||