J. Mater. Sci. Technol. ›› 2022, Vol. 119: 11-24.DOI: 10.1016/j.jmst.2021.12.029
• Research Article • Previous Articles Next Articles
W.L. Wang(), W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai
Received:
2021-10-13
Revised:
2021-11-29
Accepted:
2021-12-05
Published:
2022-08-20
Online:
2022-03-02
Contact:
W.L. Wang
About author:
* Xi’an University of Architecture and Technology, China E-mail address: wangwl@nwpu.edu.cn (W.L. Wang).W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 119: 11-24.
Fig. 1. Schematic diagram of multi-scale simulation of macro-micro coupling. (a) Macro model of heat transfer and convection based on FVM. (b) The local region of the macro model is selected for dendrite calculation, and the macro temperature field is converted into the micro temperature field using the bilinear interpolation method. (c) CET is simulated by using the CA method.
Physical properties | Value |
---|---|
Laser power, P | 60 W |
Laser scanning speed, V | 0.3 m/s |
Absorption coefficient of powder, η | 0.37 |
S olidus temperature, Ts | 798.41 K |
L iquidus temperature, Tl | 904.05 K |
Surface tension, γ0 | 0.55 N/m |
Solid viscosity, µs | 5 kg/(m s) |
Liquid viscosity, µl | 0.002 kg/(m s) |
Latent heat of fusion, Lf | 3.5 × 106 J/kg |
Heat transfer coefficient, hc | 15 W/(m2 K) |
Radiation emissivity,ε | 0.4 |
The Stefan-Boltzmann constant, σs | 5.6 7 × 10-8 W/(m 2 K4) |
Shielding gas | Ar |
Table 1. Proc e ss parameters and thermo-physical properties of Mg-3.4Y-3.6Sm-2.6Zn-0.8Zr as used in this paper [20].
Physical properties | Value |
---|---|
Laser power, P | 60 W |
Laser scanning speed, V | 0.3 m/s |
Absorption coefficient of powder, η | 0.37 |
S olidus temperature, Ts | 798.41 K |
L iquidus temperature, Tl | 904.05 K |
Surface tension, γ0 | 0.55 N/m |
Solid viscosity, µs | 5 kg/(m s) |
Liquid viscosity, µl | 0.002 kg/(m s) |
Latent heat of fusion, Lf | 3.5 × 106 J/kg |
Heat transfer coefficient, hc | 15 W/(m2 K) |
Radiation emissivity,ε | 0.4 |
The Stefan-Boltzmann constant, σs | 5.6 7 × 10-8 W/(m 2 K4) |
Shielding gas | Ar |
Physical properties | Value | Ref. |
---|---|---|
Initial alloy concentration, C0 | 3.4% | - |
Solute partition coefficient of Y, kY | 0.42 | [ |
Solute partition coefficient of Zr, kZr | 6.55 | [ |
Liquidus slope of Y, mLY | -3.5 K/wt.% | [ |
Liquidus slope of Zr, mLZr | 6.9 K/wt.% | [ |
Solute diffusion coefficient in Liquid, DL | 2.77 × 10-9 m2/s | JMatPro |
Solute diffusion coefficient in Solid, Ds | 2.8 × 10-13 m2/s | JMatPro |
Gibbs-Thomson coefficient, Г | 1.7 × 10-9 m K | [ |
Degree of kinetic anisotropy, δ | 0.1 | [ |
Table 2. Properties of Mg-3.4Y magnesium alloy as used in this paper.
Physical properties | Value | Ref. |
---|---|---|
Initial alloy concentration, C0 | 3.4% | - |
Solute partition coefficient of Y, kY | 0.42 | [ |
Solute partition coefficient of Zr, kZr | 6.55 | [ |
Liquidus slope of Y, mLY | -3.5 K/wt.% | [ |
Liquidus slope of Zr, mLZr | 6.9 K/wt.% | [ |
Solute diffusion coefficient in Liquid, DL | 2.77 × 10-9 m2/s | JMatPro |
Solute diffusion coefficient in Solid, Ds | 2.8 × 10-13 m2/s | JMatPro |
Gibbs-Thomson coefficient, Г | 1.7 × 10-9 m K | [ |
Degree of kinetic anisotropy, δ | 0.1 | [ |
Fig. 2. The distribution of flow and temperature given the laser power P=60 W and the scanning speed V=0.3 m/s. (a) Keyhole-shaped molten pool in 3D view. (b) and (c) show a comparison of cross-section molten pool morphology between experiment and numerical simulation given the same process parameters. (d) Marangoni convection distribution in the longitudinal molten pool.
Fig. 3. (a) Thermal history curve of temperature detection points along the height direction. (b) Temperature gradient and cooling rate distribution from the bottom to the top of the molten pool.
Fig. 6. Evolution of the undercooling layer's thickness in front of the SL interface and nucleation number with time, the calculated undercooling layer's thickness is at x=13.5µm.
Fig. 7. Variables evolve with distance at the front of the SL interface with 500 CAs, 800 CAs, 1100 CAs, and 1400 CAs. (a) Liquid phase solute component, and (b) Undercooling.
Fig. 8. (a) Relationship between growth velocity and undercooling at different levels of Zr solubility. (b) Evolution of growth parameter with Zr solubility.
Fig. 12. SEM images of molten pool and block of SLM-processed Mg-Y-Sm-Zn-Zr alloy. (a) The solidification structure in the cross-section of the molten pool by single-pass scanning. (b) The microstructure of the longitudinal section of the block as printed by rotating 0° layer by layer [34]. (c) The solidification structure of the longitudinal section of the block as printed by rotating 67° layer by layer [34].
[1] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9 (2021) 705-747.
DOI URL |
[2] |
W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, L. Song, Mater. Des. 164 (2019) 107553.
DOI URL |
[3] |
X. Ao, H. Xia, J. Liu, Q. He, Mater. Des. 185 (2020) 108230.
DOI URL |
[4] |
D. Zhang, D. Qiu, S. Zhu, M. Dargusch, D. StJohn, M. Easton, Scr. Mater. 183 (2020) 12-16.
DOI URL |
[5] |
P.-H. Fu, N.-Q. Wang, H.-G. Liao, W.-Y. Xu, L.-M. Peng, J. Chen, G.-Q. Hu, W.-J. Ding, T. Nonferr. Metal. Soc. 31 (2021) 1969-1978.
DOI URL |
[6] |
W.-N. Zhang, L.-Z. Wang, Z.-X. Feng, Y.-M. Chen, Optik 207 (2020) 163842.
DOI URL |
[7] |
X. Zhan, X. Lin, Z. Gao, C. Qi, J. Zhou, D. Gu, J. Alloy. Compd. 755 (2018) 123-134.
DOI URL |
[8] |
P. Jiang, S. Gao, S. Geng, C. Han, G. Mi, Int. J. Heat. Mass. Tran. 161 (2020) 120316.
DOI URL |
[9] |
A. Prasad, L. Yuan, P. Lee, M. Patel, D. Qiu, M. Easton, D. StJohn, Acta Mater. 195 (2020) 392-403.
DOI URL |
[10] | P. Liu, Z. Wang, Y. Xiao, M.F. Horstemeyer, X. Cui, L. Chen, Addit. Manuf. 26 (2019) 22-29. |
[11] |
X. Li, W. Tan, Comp. Mater. Sci. 153 (2018) 159-169.
DOI URL |
[12] |
L.D. Xiong, G.L. Zhu, G.Y. Mi, C.M. Wang, P. Jiang, J. Alloy. Compd. 858 (2021) 157669.
DOI URL |
[13] |
Y. Lian, Z. Gan, C. Yu, D. Kats, W.K. Liu, G.J. Wagner, Mater. Des. 169 (2019) 107672.
DOI URL |
[14] |
D.-R. Liu, S. Wang, W. Yan, Mater. Des. 194 (2020) 108919.
DOI URL |
[15] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[16] |
M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168 (2019) 261-274.
DOI URL |
[17] |
Y. Ali, D. Qiu, B. Jiang, F. Pan, M.-X. Zhang, J. Alloy. Compd. 619 (2015) 639-651.
DOI URL |
[18] | W. Wenli, Z. Mengqi, W. Wei, W. Along, L. Miaomiao, Rare. Metal. Mat. Eng. 49 (2020) 1151-1158. |
[19] |
D. Shu, B. Sun, J. Mi, P.S. Grant, Acta Mater. 59 (2011) 2135-2144.
DOI URL |
[20] |
W. Wang, D. Wang, L. He, W. Liu, X. Yang, Mater. Res. Express. 7 (2020) 116519.
DOI URL |
[21] |
S. Geng, P. Jiang, X. Shao, L. Guo, X. Gao, J. Mater. Sci. Technol. 46 (2020) 50-63.
DOI URL |
[22] |
S. Shrestha, Y.Kevin Chou, J. Manuf. Sci. Eng. 141 (2019) 101002.
DOI URL |
[23] |
X. Xie, J. Zhou, J. Long, Opt. Laser Technol. 140 (2021) 107085.
DOI URL |
[24] |
H. Wang, Y. Zou, Int. J. Heat. Mass. Tran. 142 (2019) 118473.
DOI URL |
[25] |
M.F. Zhu, D.M. Stefanescu, Acta. Mater. 55 (2007) 1741-1755.
DOI URL |
[26] | M.-W. Wu, S.-M. Xiong, T. Nonferr, Metal. Soc. 22 (2012) 2212-2219. |
[27] |
W. Wang, L. He, X. Yang, D. Wang, J. Alloy. Compd. 868 (2021) 159107.
DOI URL |
[28] | P. Thévoz, J.L. Desbiolles, M. Rappaz, Metall. Transact. A 20 (1989) 311-322. |
[29] | M.R. Rolchigo, R. LeSar, Comp. Mater. Sci. 150 (2018) 535-545. |
[30] |
Z. Yang, K. Jin, H. Fang, J. He, Int. J. Heat. Mass. Tran. 172 (2021) 121156.
DOI URL |
[31] | D.-R. Liu, H. Zhao, L. Wang, J. Physic. Chem. Solids 144 (2020) 109486. |
[32] |
E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. Jing, W. Li, P.D. Lee, Acta Mater. 152 (2018) 127-137.
DOI URL |
[33] |
Y. Zhao, Z. Pu, L. Wang, D.-R. Liu, Int. J. Metalcast. 16 (2022) 945-961.
DOI URL |
[34] | W. Wang, X. Yang, K.K. Wang, L. He, Mater. Today Commun. 28 (2021) 102517. |
[35] | Y.D. Song, A. Zhang, M. Li, X.G. Zhang, Foundry 61 (2012) 626-631. |
[36] |
S. Liu, Y.C. Shin, Comp. Mater. Sci. 183 (2020) 109889.
DOI URL |
[37] |
Q. He, H. Xia, J. Liu, X. Ao, S. Lin, Mater. Des. 196 (2020) 109115.
DOI URL |
[38] |
H. Li, Y. Huang, S. Jiang, Y. Lu, X. Gao, X. Lu, Z. Ning, J. Sun, Mater. Des. 197 (2021) 109262.
DOI URL |
[39] |
L. Wang, Y. Wei, X. Zhan, F. Yu, X. Cao, C. Gu, W. Ou, J. Mater. Process. Tech. 246 (2017) 22-29.
DOI URL |
[40] |
M. Amoorezaei, S. Gurevich, N. Provatas, Acta. Mater. 60 (2012) 657-663.
DOI URL |
[41] | N.C. Verissimo, C. Brito, W.L.R. Santos, N. Cheung, J.E. Spinelli, A. Garcia, J. Al- loy. Compd. 662 (2016) 1-10. |
[42] |
Y. Wang, S. Jia, M. Wei, L. Peng, Y. Wu, Y. Ji, L.-Q. Chen, X. Liu, J. Alloy. Compd. 815 (2020) 152385.
DOI URL |
[43] |
R. Chen, Q. Xu, B. Liu, J. Mater. Sci. Technol. 30 (2014) 1311-1320.
DOI URL |
[44] |
A. Prasad, L. Yuan, P.D. Lee, D.H. StJohn, Acta. Mater. 61 (2013) 5914-5927.
DOI URL |
[45] | D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta. Mater. 59 (2011) 4 907-4 921. |
[46] |
D. StJohn, M. Easton, M. Qian, J. Taylor, Metall. Mater. Transact. A 44 (2013) 2935-2949.
DOI URL |
[1] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[2] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[3] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[4] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[5] | Joseph A. Otte, Jin Zou, Matthew S. Dargusch. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting [J]. J. Mater. Sci. Technol., 2022, 118(0): 114-127. |
[6] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[7] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[8] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[9] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[10] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[11] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[12] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[13] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[14] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
[15] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||