J. Mater. Sci. Technol. ›› 2022, Vol. 113: 271-286.DOI: 10.1016/j.jmst.2021.09.065
• Research article • Previous Articles Next Articles
Shuaishuai Liua,b, Han Liua,b, Xiang Chena,b, Guangsheng Huanga,b,*(), Qin Zoua,b, Aitao Tanga,b, Bin Jianga,b,*(
), Yuntian Zhuc,d, Fusheng Pana,b
Received:
2021-07-21
Revised:
2021-09-05
Accepted:
2021-09-19
Published:
2022-01-10
Online:
2022-06-24
Contact:
Guangsheng Huang,Bin Jiang
About author:
jiangbinrong@cqu.edu.cn (B.Jiang).Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy[J]. J. Mater. Sci. Technol., 2022, 113: 271-286.
Fig. 1. (a) Schematic diagram of the extrusion process for different samples; (b) the dimension of in-situ ER3.9 tension sample and (c) schematic of the in-situ tension device [20].
Fig. 2. SEM images of (a) the sample before SS, (b) the SS sample, and (c) EDS results of the precipitates at points A and B marked in (a); SEM images of the (d) ER12.8 sample, (e) ER6.4 sample, and (f) ER3.9 sample; optical micrographs of the (g) ER12.8 sample; (h) ER6.4 sample and (i) ER3.9 sample.
Fig. 3. EBSD inverse pole figure (IPF) maps, (0001) pole figures, and corresponding grain size distributions: (a)-(c) ER12.8 sample, (d)-(f) ER6.4 sample, and (g)-(i) ER3.9 sample.
Fig. 4. (a) Tensile true stress-true strain curves of the ER12.8, ER6.4, and ER3.9 samples; (b) development of tensile properties for various samples; (c) a comparison of strength and ductility between the present work and other extruded Mg alloys containing RE [[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]; (d) strain hardening rate as a function of true strain for various samples and the corresponding close-up view of the up-turns marked by a dotted box.
Fig. 8. IPF maps (a) and GND maps (b) of ER12.8 sample at 0%, 2%, 4%, and 6% strains; the IPF maps (c) and GND maps (d) of ER3.9 sample at 0%, 2%, 4%, and 8% strains.
Fig. 9. Histogram distribution of GND density in ER12.8 sample (a), coarse grains (b), and fine grains (c) of ER3.9 sample at different strains; the change of GND density of ER12.8 sample (d) and coarse and fine grains of ER3.9 sample (f) at different strains; the increasing rate of GND density of ER12.8 sample (e) and coarse and fine grains of ER3.9 sample (g) at different strains.
Fig. 10. Evolution of heterogeneous texture between coarse and fine grains and SF distribution histograms of ER3.9 sample under 0%, 2%, 4%, and 8% strains: (a) and (b) coarse grains, (c) and (d) fine grains.
Fig. 11. (a) Superposition of SEM map on IPF map at Mg-13Gd. (b) Slip trace analyses on highlight grains 222, 326, 329, and 390 based on SEM map, EBSD maps, and theoretical slip trace directions after 5% strain. (c) Statistics of the identified slip activity in fine grains with 446 grains of Mg-13Gd sample and (d) corresponding SFs of the activated slip systems after 5% strain.
Slip mode | Slip systems | Slip plane | Slip direction | Schmid factors | |||
---|---|---|---|---|---|---|---|
Grain 222 | Grain 326 | Grain 329 | Grain 390 | ||||
Basal 〈a〉 slip | 1 | (0001) | | 0.49 | 0.12 | 0.44 | 0.04 |
2 | (0001) | | 0.23 | 0.01 | 0.04 | 0.34 | |
3 | (0001) | | 0.27 | 0.13 | 0.39 | 0.31 | |
Prismatic 〈a〉 slip | 4 | | | 0.03 | 0.46 | 0.24 | 0.08 |
5 | | | 0.25 | 0.37 | 0.30 | 0.39 | |
6 | | | 0.22 | 0.10 | 0.05 | 0.31 | |
Pyramidal 〈c + a〉 slip | 7 | | | 0.25 | 0.01 | 0.18 | 0.38 |
8 | | | 0.01 | 0.29 | 0.21 | 0.31 | |
9 | | | 0.27 | 0.23 | 0.27 | 0.09 | |
10 | | | 0.05 | 0.001 | 0.14 | 0.07 | |
11 | | | 0.25 | 0.41 | 0.15 | 0.03 | |
12 | | | 0.18 | 0.33 | 0.13 | 0.06 |
Table 1. Calculated Schmid factors of the twelve slip systems in Grains 222, 326, 329, and 390. SFs of the activated slip system (s) are bolded for each grain.
Slip mode | Slip systems | Slip plane | Slip direction | Schmid factors | |||
---|---|---|---|---|---|---|---|
Grain 222 | Grain 326 | Grain 329 | Grain 390 | ||||
Basal 〈a〉 slip | 1 | (0001) | | 0.49 | 0.12 | 0.44 | 0.04 |
2 | (0001) | | 0.23 | 0.01 | 0.04 | 0.34 | |
3 | (0001) | | 0.27 | 0.13 | 0.39 | 0.31 | |
Prismatic 〈a〉 slip | 4 | | | 0.03 | 0.46 | 0.24 | 0.08 |
5 | | | 0.25 | 0.37 | 0.30 | 0.39 | |
6 | | | 0.22 | 0.10 | 0.05 | 0.31 | |
Pyramidal 〈c + a〉 slip | 7 | | | 0.25 | 0.01 | 0.18 | 0.38 |
8 | | | 0.01 | 0.29 | 0.21 | 0.31 | |
9 | | | 0.27 | 0.23 | 0.27 | 0.09 | |
10 | | | 0.05 | 0.001 | 0.14 | 0.07 | |
11 | | | 0.25 | 0.41 | 0.15 | 0.03 | |
12 | | | 0.18 | 0.33 | 0.13 | 0.06 |
Grain (number) | Activated (338) | Non-activated (114) | Cross slip (29) |
---|---|---|---|
Slip mode (number) | Basal 〈a〉 slip (261) | Prismatic 〈a〉 slip (38) | Pyramidal 〈c + a〉 slip (73) |
Table 2. Statistical number and slip modes in fine grains.
Grain (number) | Activated (338) | Non-activated (114) | Cross slip (29) |
---|---|---|---|
Slip mode (number) | Basal 〈a〉 slip (261) | Prismatic 〈a〉 slip (38) | Pyramidal 〈c + a〉 slip (73) |
Fig. 13. (a) LUR tensile curves of ER12.8, ER6.4, and ER3.9 samples. (b) Partially enlarged hysteresis loops of different samples. (c) Schematic illustration of the partition of hetero-deformation induced stress (σHDI) and effective stress (σeff) in the loading-unloading cycle. The εae and εe are represented the anelastic recovery strain and the elastic recovery strain, respectively. The evolution of (d) HDI stress and (e) HDI hardening; (f) the effective stress of different samples with increasing tensile strain.
Fig. 14. Macroscopic strain distribution of (a) ER12.8, (b) ER6.4, and (c) ER3.9 samples during tension along ED; (d), (e), and (f) are corresponding average strain distribution curves along the designated paths L1-L6 at different tensile strains.
Fig. 15. (a) Optical micrographs of the selected region including coarse and fine grains marked by the black rectangle; (b) SEM images of speck markers used for DIC; (c) detailed distribution of the speck markers before and after deformation; (d) average strain distribution curves along ND; (e) microscopic strain (εxx and εxy) distribution in ER3.9 samples at different strains during tension along ED.
Fig. 16. TEM images of ER3.9 sample after 2% strain: (a) annular bright-field (ABF) image and (b) high-angle annular dark-field (HAADF) image of the microstructure in DRXed and un-DRXed regions; (c) and (d) are the corresponding magnification images, respectively.
[1] |
M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Acta Mater. 109 (2016) 213-222.
DOI URL |
[2] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci.. 112 (2015) 14501-14505. |
[3] | X.L. Wu, Y.T. Zhu, Mater. Res. Lett. 5 (2017) 527-532. |
[4] |
X.T. Fang, G.Z. He, C. Zheng, X.L. Ma, D. Kaoumi, Y.S. Li, Y.T. Zhu, Acta Mater. 186 (2020) 644-655.
DOI URL |
[5] | Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 7 (2019) 393-398. |
[6] |
J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnes. Alloy 8 (2020) 1-41.
DOI URL |
[7] |
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, J. Magnes. Alloy 9 (2021) 705-747.
DOI URL |
[8] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Acta Mater. 116 (2016) 43-52.
DOI URL |
[9] |
Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Mater. Sci. Eng. A 598 (2014) 106-113.
DOI URL |
[10] |
J. Moering, X.L. Ma, J. Malkin, M.X. Yang, Y.T. Zhu, S. Mathaudhu, Scr. Mater. 122 (2016) 106-109.
DOI URL |
[11] |
K.S. Raju, V.S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, G. Wilde, Acta Mater. 61 (2013) 228-238.
DOI URL |
[12] |
R.G. Li, H.R. Li, H.C. Pan, D.S. Xie, J.H. Zhang, D.Q. Fang, Y.Q. Dai, D.Y. Zhao, H. Zhang, Scr. Mater. 193 (2021) 142-146.
DOI URL |
[13] |
D. Li, G. Fan, X. Huang, D. Juul Jensen, K. Miao, C. Xu, L. Geng, Y. Zhang, T. Yu, Acta Mater. 206 (2021) 116627.
DOI URL |
[14] |
M.Z. Quadir, O. Al-Buhamad, L. Bassman, M. Ferry, Acta Mater. 55 (2007) 5438-5448.
DOI URL |
[15] |
S.H. Park, S.H. Kim, Y.M. Kim, B.S. You, J. Alloy. Compd. 646 (2015) 932-936.
DOI URL |
[16] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[17] |
W. Xu, X.C. Liu, K. Lu, Acta Mater. 152 (2018) 138-147.
DOI URL |
[18] |
N. Stanford, D. Atwell, M.R. Barnett, Acta Mater. 58 (2010) 6773-6783.
DOI URL |
[19] |
S.H. Kim, J.G. Jung, B.S. You, S.H. Park, J. Alloy. Compd. 695 (2017) 344-350.
DOI URL |
[20] |
D. Xia, G. Huang, Q. Deng, B. Jiang, S. Liu, F. Pan, Mater. Sci. Eng. A 715 (2018) 379-388.
DOI URL |
[21] |
A. Styczynski, C. Hartig, J. Bohlen, D. Letzig, Scr. Mater. 50 (2004) 943-947.
DOI URL |
[22] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[23] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[24] |
X.J. Wang, X.M. Wang, X.S. Hu, K. Wu, J. Magnes. Alloy 8 (2020) 421-430.
DOI URL |
[25] |
K. Yamada, H. Hoshikawa, S. Maki, T. Ozaki, Y. Kuroki, S. Kamado, Y. Kojima, Scr. Mater. 61 (2009) 636-639.
DOI URL |
[26] |
T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61 (2009) 644-647.
DOI URL |
[27] |
I.A. Anyanwu, S. Kamado, Y. Kojima, Mater. Trans. 42 (2001) 1206-1211.
DOI URL |
[28] |
T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Mater. 55 (2007) 4137-4150.
DOI URL |
[29] |
K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, Y. Kojima, Mater. Trans. 47 (2006) 1066-1070.
DOI URL |
[30] |
K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Sci. Eng. A 489 (2008) 44-54.
DOI URL |
[31] |
R. Li, J. Nie, G. Huang, Y. Xin, Q. Liu, Scr. Mater. 64 (2011) 950-953.
DOI URL |
[32] |
K. Wang, J. Wang, S. Huang, S. Gao, S. Guo, S. Liu, X. Chen, F. Pan, Mater. Sci. Eng. A 733 (2018) 267-275.
DOI URL |
[33] |
M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Scr. Mater. 53 (2005) 799-803.
DOI URL |
[34] |
Z. Yu, Y. Huang, X. Qiu, G. Wang, F. Meng, N. Hort, J. Meng, Mater. Sci. Eng. A 622 (2015) 121-130.
DOI URL |
[35] |
Z. Zhang, X. Liu, Z. Wang, Q. Le, W. Hu, L. Bao, J. Cui, Mater. Des. 88 (2015) 915-923.
DOI URL |
[36] |
Z. Ma, G. Li, Q. Peng, X. Peng, D. Chen, H. Zhang, Y. Yang, G. Wei, W. Xie, J. Magnes. Alloy 10 (2022) 119-128.
DOI URL |
[37] |
L. Zhang, Z. Chen, Y.H. Wang, G.Q. Ma, T.L. Huang, G.L. Wu, D.J. Jensen, Scr. Mater. 141 (2017) 111-114.
DOI URL |
[38] |
P.J. Shi, Y. Zhong, Y. Li, W.L. Ren, T.X. Zheng, Z. Shen, B. Yang, J.C. Peng, P.F. Hu, Y. Zhang, P.K. Liaw, Y.T. Zhu, Mater. Today 41 (2020) 62-71.
DOI URL |
[39] |
X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu, Scr. Mater. 103 (2015) 57-60.
DOI URL |
[40] |
S.S. Liu, J.L. Zhang, X. Chen, G.S. Huang, D.B. Xia, A.T. Tang, Y.T. Zhu, B. Jiang, F.S. Pan, Mater. Sci. Eng. A 785 (2020) 139324.
DOI URL |
[41] |
Y.Z. Meng, J.M. Yu, G.S. Zhang, Y.J. Wu, Z.M. Zhang, Z. Shi, J. Magnes. Alloy 8 (2020) 1228-1237.
DOI URL |
[42] |
J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, R.S. Chen, Scr. Mater. 127 (2017) 146-150.
DOI URL |
[43] |
X.B. Zheng, W.B. Du, K. Liu, Z.H. Wang, S.B. Li, J. Magnes. Alloy 4 (2016) 135-139.
DOI URL |
[44] |
A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323 (2002) 177-186.
DOI URL |
[45] |
K. Huang, R.E. Loge, Mater. Des 111 (2016) 548-574.
DOI URL |
[46] |
B. Dong, X. Che, Z. Zhang, J. Yu, M. Meng, J. Alloys Compd. 853 (2021) 157066.
DOI URL |
[47] |
H. Zhang, H.Y. Wang, J.G. Wang, J. Rong, M. Zha, C. Wang, P.K. Ma, Q.C. Jiang, J. Alloy. Compd. 780 (2019) 312-317.
DOI |
[48] |
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Acta Mater. 84 (2015) 42-54.
DOI URL |
[49] |
W. Roberts, B. Ahlblom, Acta Metall. 26 (1978) 801-813.
DOI URL |
[50] |
H. Miura, T. Sakai, S. Andiarwanto, J.J. Ionas, Philos. Mag. 85 (2005) 2653-2669.
DOI URL |
[51] |
H. Miura, T. Sakai, H. Hamaji, J.J. Jonas, Scr. Mater. 50 (2004) 65-69.
DOI URL |
[52] |
H.Y. Wang, Z.P. Yu, L. Zhang, C.G. Liu, M. Zha, C. Wang, Q.C. Jiang, Sci. Rep. 5 (2015) 17100.
DOI URL |
[53] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
[54] |
A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, R.K. Mishra, Acta Mater. 100 (2015) 202-214.
DOI URL |
[55] |
H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solid. 47 (1999) 1239-1263.
DOI URL |
[56] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[57] |
J. Jiang, T.B. Britton, A.J. Wilkinson, Acta Mater 61 (2013) 7227-7239.
DOI URL |
[58] |
M.S. Mehranpour, A. Heydarinia, M. Emamy, H. Mirzadeh, A. Koushki, R. Razi, Mater. Sci. Eng. A 802 (2021) 140667.
DOI URL |
[59] |
S.S. Liu, W.Z. Wang, X. Chen, G.S. Huang, H. Liu, A.T. Tang, B. Jiang, F.S. Pan, Mater. Sci. Eng. A 812 (2021) 141094.
DOI URL |
[60] |
M. Naseri, M. Reihanian, E. Borhani, Mater. Sci. Eng. A 656 (2016) 12-20.
DOI URL |
[61] |
A. Kula, X. Jia, R.K. Mishra, M. Niewczas, Int. J. Plast. 92 (2017) 96-121.
DOI URL |
[62] |
G. Wang, G. Huang, X. Chen, Q. Deng, A. Tang, B. Jiang, F. Pan, Mater. Sci. Eng. A 705 (2017) 46-54.
DOI URL |
[63] |
G.M. Zhu, L.Y. Wang, H. Zhou, J.H. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P.P. Jin, X. Q. Zeng, Int. J. Plast. 120 (2019) 164-179.
DOI URL |
[64] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Hi-gashi, Acta Mater. 51 (2003) 2055-2065.
DOI URL |
[65] |
J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55 (2007) 2101-2112.
DOI URL |
[66] |
B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S. Guo, R. Xin, J. Mater. Sci. Technol. 35 (2019) 2269-2282.
DOI |
[67] |
Y.F. Liu, Y. Cao, Q.Z. Mao, H. Zhou, Y.H. Zhao, W. Jiang, Y. Liu, J.T. Wang, Z.S. You, Y.T. Zhu, Acta Mater. 189 (2020) 129-144.
DOI URL |
[68] |
Y.F. Wang, M.X. Yang, X.L. Ma, M.S. Wang, K. Yin, A.H. Huang, C.X. Huang, Mater. Sci. Eng. A 727 (2018) 113-118.
DOI URL |
[69] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoppel, M. Goken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[70] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[71] |
L.S. Toth, C.F. Gu, B. Beausir, J.J. Fundenberger, M. Hoffman, Acta Mater 117 (2016) 35-42.
DOI URL |
[72] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94 (2018) 462-540.
DOI URL |
[73] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
[74] | W.H. Peters, W.F. Ranson, Opt. Eng. 21 (1982) 427-431. |
[75] |
C. Du, J.P.M. Hoefnagels, R. Vaes, M. G.D. Geers. Scr. Mater. 120 (2016) 37-40.
DOI URL |
[76] |
T.E.J. Edwards, F. Di Gioacchino, R. Munoz-Moreno, W.J. Clegg, Scr. Mater. 118 (2016) 46-50.
DOI URL |
[77] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu, Scr. Mater. 174 (2020) 19-23.
DOI URL |
[78] |
W. Chen, W. He, Z. Chen, B. Jiang, Q. Liu, Int. J. Plast. 133 (2020) 102806.
DOI URL |
[79] |
A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H. El Kadiri, Acta Mater. 138 (2017) 27-41.
DOI URL |
[1] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[4] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[5] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[6] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[7] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[8] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[9] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[10] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[11] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[12] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[13] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[14] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[15] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||