J. Mater. Sci. Technol. ›› 2022, Vol. 113: 261-270.DOI: 10.1016/j.jmst.2021.08.095
• Research article • Previous Articles Next Articles
Bowen Zhanga,b, Chuantong Chena,*(), Takuya Sekiguchic, Yang Liua, Caifu Lia,d,*(
), Suganuma Katsuakia
Received:
2021-05-27
Revised:
2021-07-19
Accepted:
2021-08-07
Published:
2022-01-12
Online:
2022-06-24
Contact:
Chuantong Chen,Caifu Li
About author:
licaifu@mail.sysu.edu.cn (C. Li).Bowen Zhang, Chuantong Chen, Takuya Sekiguchi, Yang Liu, Caifu Li, Suganuma Katsuaki. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength[J]. J. Mater. Sci. Technol., 2022, 113: 261-270.
Fig. 2. (a) TG-DTA curves of Ag salt paste, the microstructure evolution of Ag salt paste which sintered at (b) 100 °C, (c) 200 °C, (d) 300 °C and (e) 400 °C for 30 min.
Fig. 3. (a) TEM image of microstructure of Ag salt paste sintered at (a) 100 °C, (b) its magnified view where Ag nanoparticles necking growth and sintering start, (c) the Ag nanoparticles, (d) Ag porous structure after Ag salt paste sintered at 200 °C for 30 min.
Fig. 6. (a) TEM image of the cross-section, (b, c) the magnified view of bonding interface, (d)-(g) the corresponding EDS elemental mappings results of the cross-sectional for edge section of the sintered layer.
Fig. 7. (a) SEM images, (b) spot scanning results, (c)-(f) the corresponding EDS elemental mappings results of the cross-sectional for middle section of the sintered layer.
Fig. 8. (a) TEM images of sintered Ag salt paste on Cu substrate at the central section, (b) the magnified view of bonded Cu-Ag interface, (c) EDS analyses of the Cu-Ag interface.
Fig. 9. Fracture surface analysis of die-attachment in edge section: (a) fracture surface of Cu substrate after die shear test; (b) corresponding high magnification image; (c)-(e) EDS elements’ mapping result of the fractured surface.
Fig. 10. Fracture surface analysis of die-attachment in middle section: (a) fracture surface of Cu substrate after die shear test; (b) and (c) the corresponding high magnification image; (d)-(f) EDS elements’ mapping result of the fractured surface.
Fig. 11. (a) Cu-Cu joint structure before sintering, (b) pure Ag nanoparticles generation by the decomposition of Ag salt paste during sintering, (c) the microstructure of Ag salt paste at the edge section after sintering and (d) the microstructure of Ag salt paste at the inside section after sintering.
[1] | P.R. Chalker, Thin Solid Films 343-344 (1999) 616-622. |
[2] | X. She, A.Q. Huang, O. Lucia, B. Ozpineci, IEEE T Ind. Electr. 64 (2017) 8193-8205. |
[3] |
C. Chen, C. Choe, D. Kim, Z. Zhang, K. Suganuma, J. Alloy. Compd. 834 (2020) 155173.
DOI URL |
[4] | H.S. Chin, K.Y. Cheong, A.B. Ismail, Ismail, Metall. Mater. Trans. B. 41 (2010) 824-832. |
[5] |
D. Kim, S. Nagao, C. Chen, N. Wakasugi, Y. Yamamoto, A. Suetake, T. Takemasa, T. Sugahara, K. Suganuma, IEEE T Power Electr. 36 (2021) 4977-4990.
DOI URL |
[6] |
J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, IEEE T Power Electr. 29 (2014) 2155-2163.
DOI URL |
[7] | F. Yu, R.W. Johnson, M.C. Hamilton, IEEE T Comp. Pack Man. 5 (2015) 1258-1264. |
[8] |
S. Kim, S.H. Huh, K. Suganuma, J. Alloy. Compd. 352 (2003) 226-236.
DOI URL |
[9] |
P. Peng, A. Hu, A.P. Gerlich, G. Zou, Y.N. Zhou, ACS Appl. Mater. Interfaces. 7 (2015) 12597-12618.
DOI URL |
[10] |
W. Cai, P. Wang, J. Fan, Mech. Mater. 145 (2020) 103391.
DOI URL |
[11] | X. Cao, T. Wang, K.D.T. Ngo, G.-.Q. Lu, IEEE Trans. Compon. Packag. Manag. 1 (2011) 495-501. |
[12] |
Q. Xu, Y. Mei, X. Li, G.Q. Lu, J. Alloy. Compd. 675 (2016) 317-324.
DOI URL |
[13] | K. Suganuma, N. Sato, A. Suetake, C. Choe, T. Sugahara, S. Nagao, C. Chen, Ecs. Transactions 86 (2018) 17-22. |
[14] |
H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, J. Alloy. Compd. 774 (2019) 487-494.
DOI URL |
[15] | T. Ogura, S. Takata, M. Takahashi, A. Hirose, J. Jpn. Inst. Met. Mater. 56 (2015) 1030-1036. |
[16] | C. Liu, F. Mohn, J. Schuderer, D. Torresin, in: 2017 IEEE 67th Electronic Compo- nents and Technology Conference (ECTC), 2017, pp. 1547-1552. |
[17] |
W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, J.M. Song, Y.T. Chiu, P.F. Yang, Mater. Sci. Eng. A 613 (2014) 372-378.
DOI URL |
[18] |
C. Chen, S. Noh, H. Zhang, C. Choe, J. Jiu, S. Nagao, K. Suganuma, Scr. Mater. 146 (2018) 123-127.
DOI URL |
[19] |
T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, IEEE T Compon. Pack T 33 (2010) 98-104.
DOI URL |
[20] | D. Kim, C. Chen, A. Suetake, C. Choe, T. Sugahara, S. Nagao, K. Suganuma, Mi- croelectron Reliab. 88 (2018) 779-787. |
[21] | H. Zheng, D. Berry, J.N. Calata, K.D.T. Ngo, IEEE T Comp. Pack Man. 3 (2013) 915-922. |
[22] |
J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, Mater. Des. 140 (2018) 64-72.
DOI URL |
[23] |
C. Chen, Z. Zhang, D. Kim, K. Suganuma, Appl. Surf. Sci. 497 (2019) 143797.
DOI URL |
[24] |
Z. Zhang, C. Chen, G. Liu, C. Li, S. Kurosaka, S. Nagao, K. Suganuma, Appl. Surf. Sci. 485 (2019) 468-475.
DOI URL |
[25] |
Q. Wang, S.H. Choa, W. Kim, J. Hwang, C. Moon, J. Electron. Mater. 35 (2006) 425-432.
DOI URL |
[26] |
S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, J. Mater. Sci. -Mater. Electron. 27 (2016) 1-10.
DOI URL |
[27] |
A.S. Paknejad, G. Dumas, G. West, G. Lewis, H.S. Mannan, J. Alloy. Compd. 617 (2014) 994-1001.
DOI URL |
[28] | S.K. Bhogaraju, O. Mokhtari, J. Pascucci, F. Conti, G. Elger, In: 2019 22nd Euro- pean Microelectronics and Packaging Conference and Exhibition, EMPC 2019, 2019, 8951887. |
[29] | W. Li, D. Hu, L. Li, C.F. Li, J. Jiu, C. Chen, T. Ishina, T. Sugahara, K. Suganuma, 9 (2017) 24711-24721. |
[30] |
M. Hatamura, S. Yamaguchi, S.-y. Takane, Y. Chen, K. Suganuma, Dalton Trans. 44 (2015), 8993-9003.
DOI PMID |
[31] |
B. Zhang, W. Li, J. Jiu, Y. Yang, J. Jing, K. Suganuma, Inorg. Chem. 58 (2019) 3374-3381.
DOI URL |
[32] | J. Yeom, S. Nagao, C. Chen, T. Sugahara, H. Zhang, C. Choe, C.F. Li, K. Suganuma, Appl. Phys. Lett. 114 (2019) 253103. 1-253103.4. |
[33] |
C. Chen, J. Yeom, C. Choe, G. Liu, Y. Gao, Z. Zhang, B. Zhang, D. Kim, K. Sug- anuma, J. Mater Sci. 54 (2019) 13344-13357.
DOI URL |
[34] |
Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Sug- anuma, J. Alloy. Compd. 780 (2019) 435-442.
DOI URL |
[35] |
F.C. Nix, D. Macnair, Phys. Rev. 60 (1941) 597-605.
DOI URL |
[36] |
W. Tiano, M. Dapiaggi, G. Artioli, J. Appl. Crystallogr. 36 (2003) 1461-1463.
DOI URL |
[37] |
Xie J, Shen J, Deng J, X. Chen, J. Electron. Mater. 49 (2020) 2669-2676.
DOI URL |
[38] | Y.Z. Hu, R. Sharangpani, S.P. Tay, Plant Physiol 148 (2001) G669-G675. |
[39] |
C.J. Du, X. Li, Y.H. Mei, G.Q. Lu, Appl. Surf. Sci. 490 (2019) 403-410.
DOI URL |
[40] | C.H. Sha, C.C. Lee, IEEE T Comp. Pack Man. 1 (2011) 1983-1987. |
[41] |
M. Bowker, E. Rowbotham, F. Leibsle, S. Haq, Surf. Sci. 349 (1996) 97-110.
DOI URL |
[42] |
R. Gao, S. He, Y. Shen, H. Nishikawa, J. Electron. Mater. 48 (2019) 2263-2271.
DOI URL |
[43] |
Y. Yao, F. Zaera, Surf. Sci. 646 (2016) 37-44.
DOI URL |
[44] |
D. Tomotoshi, H. Kawasaki, Nanomaterials 10 (2020) 1689.
DOI URL |
[1] | Zhen Geng, Xueping Li, Luli Ji, Zhaoyang Li, Zhenduo Cui, Jing Wang, Jingyuan Cui, Xianjin Yang, Changsheng Liu. A novel snail-inspired bionic design of titanium with strontium-substituted hydroxyapatite coating for promoting osseointegration [J]. J. Mater. Sci. Technol., 2021, 79(0): 35-45. |
[2] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[3] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
[4] | Lei Cao, Ihsan Ullah, Na Li, Shiyu Niu, Rujie Sun, Dandan Xia, Rui Yang, Xing Zhang. Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants [J]. J. Mater. Sci. Technol., 2019, 35(5): 719-726. |
[5] | H. Zhou, C. Zhang, W. Wang, M. Yasir, L. Liu. Microstructure and Mechanical Properties of Fe-based Amorphous Composite Coatings Reinforced by Stainless Steel Powders [J]. J. Mater. Sci. Technol., 2015, 31(1): 43-47. |
[6] | Congxiao Sun, Shuming Wang, Wenhao Guo, Weiping Shen, Changchun Ge. Bonding Interface of W-CuCrZr Explosively Welded Composite Plates for Plasma Facing Components [J]. J. Mater. Sci. Technol., 2014, 30(12): 1230-1234. |
[7] | Hongliang Ming, Jianqiu Wang, Zhiming Zhang, Siyan Wang, En-Hou Han, Wei Ke. Multilayer Graphene:A Potential Anti-oxidation Barrier in Simulated Primary Water [J]. J. Mater. Sci. Technol., 2014, 30(11): 1084-1087. |
[8] | Qian Wang, Xuesong Leng, Jiuchun Yan, Weibing Guo, Yu Fu, Tianming Luan. Al 1060/Pure Iron Clad Materials by Vacuum Roll Bonding and Their Solderability [J]. J. Mater. Sci. Technol., 2013, 29(10): 948-954. |
[9] | Xin Yang, Yanhong Zou, Qizhong Huang, Zhean Su, Mingyu Zhang, Xin Chang, Zhiyong Xie. Influence of Preparation Technology on the Structure and Phase Composition of MoSi2-Mo5Si3/SiC Multi-coating for Carbon/Carbon Composites [J]. J Mater Sci Technol, 2010, 26(2): 106-112. |
[10] | Dejun KONG, Yongkang ZHANG, Zhigang CHEN, Jinzhong LU. Interfacial Bonding Strength of TiN Film Coated on Si3N4 Ceramic Substrate [J]. J Mater Sci Technol, 2007, 23(04): 487-490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||