J. Mater. Sci. Technol. ›› 2022, Vol. 113: 253-260.DOI: 10.1016/j.jmst.2021.09.013
• Research article • Previous Articles Next Articles
Chen Chena, Yanzhou Fana, Wei Wanga, Hang Zhangb, Jialiang Houa, Ran Weia,*, Tao Zhangc, Tan Wanga,*, Mo Lia,d, Shaokang Guana, Fushan Lia,*()
Received:
2021-06-14
Revised:
2021-09-19
Accepted:
2021-09-24
Published:
2021-10-08
Online:
2022-06-24
Contact:
Ran Wei,Tan Wang,Fushan Li
About author:
*E-mail address: fsli@zzu.edu.cn (F. Li).Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification[J]. J. Mater. Sci. Technol., 2022, 113: 253-260.
Fig. 2. Back-scattered electron images of the specimens with (a) d = 2 mm, (b) d = 3 mm, (c) d = 5 mm, and (d) d = 7 mm, and EDS results of sideplate and inter-sideplate regions of the specimens with (e) d = 2 mm, (f) d = 3 mm, (g) d = 5 mm and (h) d = 7 mm.
Fig. 3. Back-scattered electron images with high magnification exhibiting ultrafine structures of the specimens with (a) d = 2 mm, (b) d = 3 mm, (c) d = 5 mm, and (d) d = 7 mm.
Fig. 4. The phase maps of the specimens with (a) d = 2 mm, (b) d = 3 mm, (c) d = 5 mm, and (d) d = 7 mm; the IPF images of (e) d = 2 mm, (f) d = 3 mm, (g) d = 5 mm, and (h) d = 7 mm; and the OR distribution between FCC and BCC phase in (i) d = 2 mm, (j) d = 3 mm, (k) d = 5 mm, and (l) d = 7 mm according to N-W OR.
Fig. 5. (a) Typical engineering compressive stress-strain curves, (b) yield strength, (c) compressive plasticity, and (d) microhardness of the HEA specimens produced via different diameters or cooling rates.
Fig. 7. Phase boundary distribution of the specimens with different casting diameters (different colors exhibit deviation from theoretical N-W/K-S OR at the phase boundary: 0°-3.5° (light blue); 3.5°-7° (pink); 7°-30° (red); >30° (black)).
Fig. 8. (a) The HADDF-STEM image of the specimen with d = 3 mm, (b)-(f) the Cr, Fe, Co, Ni and Al distribution in the regions marked with rectangular region in Fig. 8(a), (g) bright-field image of the specimen with d = 3 mm; and (h) SAED pattern of the region marked with circle in Fig. 8(g).
Fig. 9. Schematic diagram of structural evolution in CrFeCoNiAl0.6 influenced by cooling rates (the phase formation tendencies under laser surface melting and arc-melting & cooling are from ref. [21]).
[1] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[2] |
B.E. Macdonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E.J. Lavernia, JOM 69 (2017) 2024-2031.
DOI URL |
[3] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
[4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (6201) (2014) 1153-1158.
DOI PMID |
[5] |
Y. Shi, B. Yang, P.K. Liaw, Metals (Basel) 7 (2) (2017) 43-60.
DOI URL |
[6] | Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, N. Birbilis, npj Mater. Deg. 1 (2017) 15-32. |
[7] |
X.W. Qiu. J. Alloy. Compd. 735 (2018) 359-364.
DOI URL |
[8] |
Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, W.L. Jia, J. Alloy. Compd. 775 (2019) 1-14.
DOI |
[9] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (3) (2019) 369-373.
DOI URL |
[10] |
P.P. Li, A.D. Wang, C.T. Liu, J. Alloy. Compd. 694 (2017) 55-60.
DOI URL |
[11] |
H. Zhang, Y. Yang, L. Liu, C. Chen, T. Wang, R. Wei, T. Zhang, Y. Dong, F. Li, J. Magn. Magn. Mater. 478 (2019) 116-121.
DOI |
[12] |
C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang, T. Zhang, K. Wu, F. Li, S. Guan, J. Jiang, Intermetallics 122 (2020) 106778.
DOI URL |
[13] | C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang, T. Zhang, F. Li, J. Magn. Magn. Mater. 502 (2020) 116513. |
[14] |
S.A. Kube, J. Schroers, Scripta Mater 186 (2020) 392-400.
DOI URL |
[15] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[16] |
H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater. 29 (30) (2017) 1701678.
DOI URL |
[17] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131 (2017) 323-335.
DOI URL |
[18] |
B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Scripta Mater 162 (2019) 18-23.
DOI |
[19] |
H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 705 (2017) 411-419.
DOI URL |
[20] | S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Mater. Today Nano 4 (2018) 46-53. |
[21] |
C. Chen, H. Zhang, S. Hu, R. Wei, T. Wang, Y. Cheng, T. Zhang, N. Shi, F. Li, S. Guan, J. Jiang, J. Alloy. Compd. 826 (2020) 154100.
DOI URL |
[22] |
X.H. Lin, W.L. Johnson, J. Appl. Phys. 78 (11) (1995) 6514-6519.
DOI URL |
[23] |
C. Cayron, Mater. Charac. 94 (2014) 93-110.
DOI URL |
[24] |
G. Miyamoto, N. Takayama, T. Furuhara, Scripta Mater 60 (12) (2009) 1113-1116.
DOI URL |
[25] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, X.J.Liu Y.Wu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater 102 (2016) 187-196.
DOI URL |
[26] |
N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, D.M. Ikornikov, V. N. Sanin, S.V. Zherebtsov, Mater. Sci. Eng. A 728 (2018) 54-62.
DOI URL |
[27] |
X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater 141 (2017) 59-66.
DOI URL |
[28] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater 62 (1)(2014) 105-113.
DOI URL |
[29] |
C. Chen, S. Pang, Y. Cheng, T. Zhang, J. Alloy. Compd. 659 (2016) 279-287.
DOI URL |
[30] |
W.R. Wan, W.L. Wan, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[1] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[2] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[3] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
[4] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[5] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[6] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[7] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[8] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[9] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[10] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[11] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[12] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[13] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[14] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[15] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||