J. Mater. Sci. Technol. ›› 2022, Vol. 113: 14-21.DOI: 10.1016/j.jmst.2021.10.021
• Correspondence • Previous Articles Next Articles
S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian*()
Revised:
2021-09-20
Published:
2022-06-22
Online:
2022-06-24
Contact:
M. Qian
About author:
*E-mail address: ma.qian@rmit.edu.au (M. Qian)1 Current address: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys[J]. J. Mater. Sci. Technol., 2022, 113: 14-21.
Samples | Powder size (µm) | Laser power (W) | Laser spot size (mm) | Scan speed (mm/min) | Overlap ratio (%) | Powder supplier |
---|---|---|---|---|---|---|
Columnar Ti-6Al-4V | 45-90 | 250 | 0.61 | 600 | 50% | TLS Technik GmbH, Germany |
Equiaxed Ti-6Al-4V* | 45-90 | 150 | 0.61 | 600 | 50% | TLS Technik GmbH, Germany |
Columnar Ti-6Al-2Sn-4Zr-2Mo | 45-106 | 1000 | 2.5 | 1000 | 50% | AP&C, Canada |
Equiaxed Ti-4Al-2V | 45-106 | 500 | 1.5 | 800 | 50% | RHENIUMET, China. |
Table 1. LMD conditions used to fabricate samples of each alloy.
Samples | Powder size (µm) | Laser power (W) | Laser spot size (mm) | Scan speed (mm/min) | Overlap ratio (%) | Powder supplier |
---|---|---|---|---|---|---|
Columnar Ti-6Al-4V | 45-90 | 250 | 0.61 | 600 | 50% | TLS Technik GmbH, Germany |
Equiaxed Ti-6Al-4V* | 45-90 | 150 | 0.61 | 600 | 50% | TLS Technik GmbH, Germany |
Columnar Ti-6Al-2Sn-4Zr-2Mo | 45-106 | 1000 | 2.5 | 1000 | 50% | AP&C, Canada |
Equiaxed Ti-4Al-2V | 45-106 | 500 | 1.5 | 800 | 50% | RHENIUMET, China. |
Variants | Orientation relationship |
---|---|
A | |
B | |
C | |
D | |
E | |
F | |
G | |
H | |
I | |
J | |
K | |
L | |
Table 2. The twelve α-variants in titanium defined by the Burgers orientation relationship [7].
Variants | Orientation relationship |
---|---|
A | |
B | |
C | |
D | |
E | |
F | |
G | |
H | |
I | |
J | |
K | |
L | |
Fig. 1. Representative inverse pole figure maps of the α-phase variants along the build direction by LMD: (a) columnar Ti-6Al-4V [4]; (b) equiaxed Ti-6Al-4V [4] (under the terms of the Creative Commons CC BY license); (c) columnar Ti-6Al-2Sn-4Zr-2Mo, where the broken profiles indicate the prior-β grain boundaries; and (d) equiaxed Ti-4Al-2V.
Fig. 2. Statistical distribution of the neighbouring α-variant misorientation angle and misorientation axes in: (a) columnar Ti-6Al-4V; (b) equiaxed Ti-6Al-4V; (c) columnar Ti-6Al-2Sn-4Zr-2Mo; and (d) equiaxed Ti-4Al-2V. More than 105 α-variants or α-laths were analysed in each grain structure. The three inset inverse pole figures in each plot display the misorientation axes corresponding to misorientation angle ranges of 5-10°, 55-70° and 85-95°.
Fig. 3. (a) Comparison of the statistical distribution of the five types of α/α boundaries in columnar and equiaxed Ti-6Al-4V. Distribution maps of the five types of α/α boundaries in columnar prior-β grains (b) and equiaxed prior-β grains (c).
Fig. 4. Inverse pole figure (IPF) maps relative to the build direction of the reconstructed prior-β columnar grains in Ti-6Al-4V (a) and equiaxed grains in Ti-6Al-4V (b), adapted from Ref. [4] under the terms of the Creative Commons CC BY license. Contour {0001} pole figures of the α-phase in the columnar grain ① from (a) and in the equiaxed grain ④ from (b) are shown at the right sides of respective IPF maps. White circles in the pole figures indicate the (0001) pole of minimum intensity, while red circles for the (0001) pole of maximum intensity.
Fig. 5. (a) Inverse pole figure maps relative to the build direction of the reconstructed prior-β columnar grains in Ti-6Al-2Sn-4Zr-2Mo and contour {0001} pole figures of the α-phase in the columnar grain ⑦. (b) Inverse pole figure maps relative to the build direction of the reconstructed prior-β columnar grains in Ti-4Al-2V and contour {0001} pole figures of the α-phase in the equiaxed grain ⑧. White circles in the pole figures indicate the (0001) pole of minimum intensity, while red circles for the (0001) pole of maximum intensity.
Fig. 6. (a) Distribution of variant C in columnar prior-β grain ①. (b) Distribution of variant B in equiaxed prior-β grain ④. (c) Area fractions of the 12 α-variants in columnar prior-β grains ①, ② and ③. (d) Area fractions of the 12 α-variants in equiaxed prior-β grains ④, ⑤ and ⑥. The dashed lines in (c) and (d) refer to the random average distribution of 8.33%.
Fig. 8. Schmid factor (SF) distribution of prismatic slip systems in columnar and equiaxed grains. The SF of each α-lath contained in Fig. 1(a) (columnar) and Fig. 1(b) (equiaxed) (>105 α-laths in each case) is obtained using the AZtecCrystal software by applying a force along the tensile loading direction in Ref. [4]. Both the relative frequency and the accumulated frequency from high to low values of SF are calculated and plotted.
[1] |
B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133 (2017) 120-133.
DOI URL |
[2] |
W.G. Burgers, Physica 1 (1934) 561-586.
DOI URL |
[3] |
S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41 (2010) 3422-3434.
DOI URL |
[4] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 142.
DOI PMID |
[5] |
M. Simonelli, Y.Y. Tse, C. Tuck, Metall. Mater. Trans. A 45 (2014) 2863-2872.
DOI URL |
[6] |
S.L. Lu, H.P. Tang, S.M.L. Nai, Y.Y. Sun, P. Wang, J. Wei, M. Qian, Mater. Charact. 152 (2019) 162-168.
DOI |
[7] |
S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51 (2003) 2485-2503.
DOI URL |
[8] | C. Jourdan, D. Rome-Talbot, J. Gastaldi, Philos. Mag. 26 (1972) 1053-1055. |
[9] |
C. Jourdan, J. Gastaldi, P. Marzo, G. Grange, J. Mater. Sci. 26 (1991) 4355-4360.
DOI URL |
[10] |
S.L. Semiatin, K.T. Kinsel, A.L. Pilchak, G.A. Sargent, Metall. Mater. Trans. A 44 (2013) 3852-3865.
DOI URL |
[11] |
T. Furuhara, T. Maki, Mater. Sci. Eng. A 312 (2001) 145-154.
DOI URL |
[12] |
G.C. Obasi, S. Birosca, J. Quinta da Fonseca, M. Preuss, Acta Mater. 60 (2012) 1048-1058.
DOI URL |
[13] |
Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, R. Yang, Acta Mater. 126 (2017) 372-382.
DOI URL |
[14] |
R. Shi, V. Dixit, G.B. Viswanathan, H.L. Fraser, Y. Wang, Acta Mater. 102 (2016) 197-211.
DOI URL |
[15] |
D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser, Acta Mater. 51 (2003) 4679-4691.
DOI URL |
[16] |
D. Bhattacharyya, G.B. Viswanathan, H.L. Fraser, Acta Mater. 55 (2007) 6765-6778.
DOI URL |
[17] |
H.Z. Zhong, Z. Liu, J.F. Gu, Mater. Charact. 131 (2017) 91-97.
DOI URL |
[18] |
B. Baufeld, O. Biest, S. Dillien, Metall. Mater. Trans. A 41 (2010) 1917-1927.
DOI URL |
[19] |
Z. Li, J. Li, Y. Zhu, X. Tian, H. Wang, J. Alloy. Comp. 661 (2016) 126-135.
DOI URL |
[20] |
R. Banerjee, D. Bhattacharyya, P.C. Collins, G.B. Viswanathan, H.L. Fraser, Acta Mater. 52 (2004) 377-385.
DOI URL |
[21] | P.L. Stephenson, N. Haghdadi, R. DeMott, X.Z. Liao, S.P. Ringer, S. Primig, Addit. Manuf. 36 (2020) 101581. |
[22] |
R. DeMott, P. Collins, C. Kong, X. Liao, S. Ringer, S. Primig, Ultramicroscopy 218 (2020) 113073.
DOI URL |
[23] |
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C. K. Chua, Acta Mater. 97 (2015) 1-16.
DOI URL |
[24] |
M.J. Bermingham, D. Kent, H. Zhan, D.H. StJohn, M.S. Dargusch, Acta Mater. 91 (2015) 289-303.
DOI URL |
[25] | T. Song, T. Dong, S.L. Lu, K. Kondoh, R. Das, M. Brandt, M. Qian, Addit. Manuf. 46 (2021) 102139. |
[26] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85 (2015) 74-84.
DOI URL |
[27] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125 (2017) 390-400.
DOI URL |
[28] |
Z. Zhao, J. Chen, X. Lu, H. Tan, X. Lin, W. Huang, Mater. Sci. Eng. A 691 (2017) 16-24.
DOI URL |
[29] |
F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 53 (2005) 555-567.
DOI URL |
[30] | J.W. Christian, The Theory of Transformations in Metals and Alloys, 3rd ed.,Pergamon, Netherlands, 2002. |
[31] |
E. Farabi, P.D. Hodgson, G.S. Rohrer, H. Beladi, Acta Mater. 154 (2018) 147-160.
DOI URL |
[32] |
H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater. 80 (2014) 478-489.
DOI URL |
[33] |
G.A. Sargent, K.T. Kinsel, A.L. Pilchak, A.A. Salem, S.L. Semiatin, Metall. Mater. Trans. A 43 (2012) 3570-3585.
DOI URL |
[34] | G. Lütjering, J.C. Williams, Titanium, 2nd ed., Springer, 2003. |
[35] | S. Banerjee, P. Mukhopadhyay, Phase Transformations: Examples from Tita- nium and Zirconium Alloys, Elsevier, Oxford, 2007. |
[36] |
T. Furuhara, J.M. Howe, H.I. Aaronson, Acta Metall. Mater. 39 (1991) 2873-2886.
DOI URL |
[37] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[38] |
K. Carpenter, A. Tabei, Materials (Basel) 13 (2020) 255.
DOI URL |
[39] | Y.R. Choi, S.D. Sun, Q. Liu, M. Brandt, M. Qian, Int. J. Fatigue 130 (2020) 105236. |
[40] |
V.T. Em, S.Y. Ivanov, I.D. Karpov, S.A. Rylov, E.V. Zemlyakov, K.D. Babkin, J. Phys. Conf. Ser. 1109 (2018) 012049.
DOI URL |
[41] |
G.S. Rohrer, D.M. Saylor, B.E. Dasher, B.L. Adams, A.D. Rollett, P. Wynblatt, Z. Metallkd. 95 (2004) 197-214.
DOI URL |
[42] | G. Palumbo, E.M. Lehockey, P. Lin, JOM 50 (1998) 40-43. |
[43] | G.S. Was, V. Thaveeprungsriporn, D.C. Crawford, JOM 50 (1998) 44-49. |
[44] |
J. Wang, I.J. Beyerlein, Model. Simul. Mater. Sci. Eng. 20 (2012) 024002.
DOI URL |
[45] |
F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Int. J. Plast. 25 (2009) 1066-1082.
DOI URL |
[1] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[2] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[3] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[4] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[5] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[6] | Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 1-13. |
[7] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[8] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[9] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[10] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[11] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[12] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[13] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
[14] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[15] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||