J. Mater. Sci. Technol. ›› 2022, Vol. 113: 1-13.DOI: 10.1016/j.jmst.2021.09.011
• Research article • Next Articles
Yue Donga, Xingang Liua,*(), Junjie Zoua, Yujiao Kea, Pengwei Liua, Lan Mab, Hengjun Luoc
Received:
2021-06-16
Revised:
2021-09-25
Accepted:
2021-09-26
Published:
2021-12-29
Online:
2022-06-24
Contact:
Xingang Liu
About author:
*E-mail address: lxg@ysu.edu.cn (X. Liu).Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy[J]. J. Mater. Sci. Technol., 2022, 113: 1-13.
Fig. 1. Typical microstructure morphology of Ti-55511 alloy deformed at 900 °C (ε = 0.6,ε˙=0.1 s-1) and cooled at 25 °C/s. (a) and (b) are the IPFZ and band contrast maps. Black and white lines in (a) and (b) represent the high angle and low angle boundaries, respectively. (c) and (d) show the point-to-point misorientation profiles along the red arrow and black arrow shown in (a).
Fig. 3. Distribution of misorientation angle and the change of microstructure characteristics under different cooling rates and interrupt temperatures. (a) MAD, (b) the distribution of the β-average grain size, the percentage content of α-phase, the percentage content of LAGBs, and the SRX percentage.
Fig. 7. BC maps and Phase maps corresponding to the microstructure at slower cooling rates and interruption temperatures (LAGBs of 2°-15° in BC maps are indicated by white lines, 15°-30° by black lines, 30°-45° by red lines, 45°-60° by blue lines, and 60°-90° by green lines in Fig. 7(a-c)).
Fig. 9. IPF maps of α / β at 0.1 °C/s-450 °C (a, b, c, f). Pole figures corresponding to {0001} and {11-20} α and {110} and {111} β in region I (d, e). Pole figures corresponding to α / β in region II (g).
Fig. 10. IPF maps of α / β at 0.05 °C/s-560 °C (a, b, c, e). Pole figures corresponding to {0001} and {11-20} α and {110} and {111} β in region III (d). Pole figures corresponding to α / β in region IV (f).
Grains | θ/[u v t w] |
---|---|
α1 and α2 | 64°/[4 4 -8 3] |
α1 and α5 | 62°/[-1 2 -1 0] |
α2 and α3 | 61°/[-2 1 1 0] |
α2 and α4 | 62°/[1 1 -2 0] |
α2 and α5 | 60°/[-1 -2 3 0] |
α4 and α5 | 60°/[1 -2 1 0] |
α3 and α6 | 61°/[-2 1 1 0] |
α3 and α7 | 59°/[1 -2 1 0] |
α6 and α7 | 12°/[0 0 0 -1] |
Table 1. The relationship of the axial angle pairs of ten kinds of intersecting α colonies at 0.05 °C/s-560 °C.
Grains | θ/[u v t w] |
---|---|
α1 and α2 | 64°/[4 4 -8 3] |
α1 and α5 | 62°/[-1 2 -1 0] |
α2 and α3 | 61°/[-2 1 1 0] |
α2 and α4 | 62°/[1 1 -2 0] |
α2 and α5 | 60°/[-1 -2 3 0] |
α4 and α5 | 60°/[1 -2 1 0] |
α3 and α6 | 61°/[-2 1 1 0] |
α3 and α7 | 59°/[1 -2 1 0] |
α6 and α7 | 12°/[0 0 0 -1] |
Fig. 13. The schematic representation of α-phase nucleation and continuous growth with different cooling times. (a) 0.5 °C/s, (b) 0.1 °C/s, (c) 0.05 °C/s.
Cooling rate (°C/s) | Euler (ϕ1, Ф, ϕ2) | Miller indices (hkl) [uvw] | Texture intensity |
---|---|---|---|
25 | (90°,45°,90°) | (101) [-101] | 22.96 |
12.5 | (0 °,30 °,45°) | (112) [1-10] | 13.45 |
2.5 | (0°,90°,45°) | (110) [1-10] | 19.80 |
1.0 | (40°,45°,90°) | (101) [-1-21] | 35.06 |
0.5-450 °C | (90°,15°,90°) | (104) [-401] | 11.34 |
0.1-560 °C | (90°,30°,90°) | (102) [-201] | 11.60 |
0.05-700 °C | (60°,45°,90°) | (101) [-1-11] | 12.78 |
0.1-450 °C | (90°,75°,90°) | (401) [-104] | 9.63 |
0.05-560 °C | (30°,25°,70°) | (316) [-2 -15 3] | 6.06 |
0.05-450 °C | (90°,30°,90°) | (102) [-201] | 8.62 |
Table 2. The Euler angles, Miller indices, and the strongest texture intensity at different cooling rates.
Cooling rate (°C/s) | Euler (ϕ1, Ф, ϕ2) | Miller indices (hkl) [uvw] | Texture intensity |
---|---|---|---|
25 | (90°,45°,90°) | (101) [-101] | 22.96 |
12.5 | (0 °,30 °,45°) | (112) [1-10] | 13.45 |
2.5 | (0°,90°,45°) | (110) [1-10] | 19.80 |
1.0 | (40°,45°,90°) | (101) [-1-21] | 35.06 |
0.5-450 °C | (90°,15°,90°) | (104) [-401] | 11.34 |
0.1-560 °C | (90°,30°,90°) | (102) [-201] | 11.60 |
0.05-700 °C | (60°,45°,90°) | (101) [-1-11] | 12.78 |
0.1-450 °C | (90°,75°,90°) | (401) [-104] | 9.63 |
0.05-560 °C | (30°,25°,70°) | (316) [-2 -15 3] | 6.06 |
0.05-450 °C | (90°,30°,90°) | (102) [-201] | 8.62 |
Fig. 15. Orientation Distribution Function (ODF) three-dimensional stereogram and φ1-ϕ two-dimensional plane profiles corresponding to the cooling rate of 25 °C/s of β with the standard ODF graph of BCC (a, b), 1.0 °C/s of β and 0.05 °C/s of β / α (c), respectively, in a coordinate system established with three Euler angles φ1, ϕ, and φ2, respectively.
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[2] |
S. Shekhar, R. Sarkar, S.K. Kar, A. Bhattacharjee, Mater. Des. 66 (2015) 596-610.
DOI URL |
[3] |
X.Q. Jiang, X.G. Fan, M. Zhan, R. Wang, Y.F. Liang, Mater. Des. 203 (2021) 109589.
DOI URL |
[4] |
J. Zhao, L. Lv, K. Wang, G. Liu, J. Mater. Sci. Technol. 38 (2020) 125-134.
DOI |
[5] |
P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, J. Mater. Sci. Technol. 39 (2020) 56-73.
DOI URL |
[6] |
I. Balasundar, K.R. Ravi, T. Raghu, Mater. Sci. Eng. A 684 (2017) 135-145.
DOI URL |
[7] |
W. Chen, Y. Lv, X. Zhang, C. Chen, Y.C. Lin, K. Zhou, Mater. Sci. Eng. A 758 (2019) 71-78.
DOI URL |
[8] |
Z. Sun, S. Guo, H. Yang, Acta Mater. 61 (2013) 2057-2064.
DOI URL |
[9] |
D. He, J.C. Zhu, S. Zaefferer, D. Raabe, Y. Liu, Z.L. Lai, X.W. Yang, Mater. Sci. Eng. A 549 (2012) 20-29.
DOI URL |
[10] |
X. Shi, W. Zeng, Y. Long, Y. Zhu, J. Alloy. Compd. 727 (2017) 555-564.
DOI URL |
[11] |
M. Ahmed, D.G. Savvakin, O.M. Ivasishin, E.V. Pereloma, Mater. Sci. Eng. A 576 (2013) 167-177.
DOI URL |
[12] |
K. Hua, Q. Wan, H. Kou, F. Zhang, Y. Zhang, J. Li, Mater. Des. 197 (2021) 109275.
DOI URL |
[13] |
D. Qiu, R. Shi, P. Zhao, D. Zhang, W. Lu, Y. Wang, Acta Mater. 112 (2016) 347-360.
DOI URL |
[14] |
X.G. Fan, M. Meng, P.F. Gao, M. Zhan, Mater. Sci. Eng. A 710 (2018) 271-279.
DOI URL |
[15] |
Z. Lu, J. Luo, B. Wang, M. Li, Mater. Des. 189 (2020) 108490.
DOI URL |
[16] |
T. Karthikeyan, A. Dasgupta, R. Khatirkar, S. Saroja, I. Samajdar, M. Vijayalak-shmi, Mater. Sci. Eng. A 528 (2010) 549-558.
DOI URL |
[17] | J. Xu, W. Zeng, Y. Zhao, X. Sun, Z. Du, J. Alloy. Compd. 688 (2016) 301-309. |
[18] |
Y.C. Lin, Y. Tang, X.Y. Zhang, C. Chen, H. Yang, K.C. Zhou, Vacuum 159 (2019) 191-199.
DOI |
[19] |
G.D. Pang, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, X.G. Liu, Y.W. Xiao, K.C. Zhou, Mater. Charact. 167 (2020) 110471.
DOI URL |
[20] |
A. Creuziger, L. Hu, T. Gnäupel-Herold, A.D. Rollett, Integr. Mater. Manuf. Innov. 3 (2014) 1-19.
DOI URL |
[21] |
R. Dong, J. Li, H. Kou, J. Fan, B. Tang, J. Mater. Sci. Technol. 35 (2019) 48-54.
DOI URL |
[22] |
L. Meng, T. Kitashima, T. Tsuchiyama, M. Watanabe, Mater. Sci. Eng. A 771 (2020) 138640.
DOI URL |
[23] |
Y.M. Cui, W.W. Zheng, F. Zhang, A.X. Sha, Mater. Sci. Forum 849 (2016) 226-231.
DOI URL |
[24] |
X. Pan, X. Wang, Z. Tian, W. He, X. Shi, P. Chen, L. Zhou, J. Alloy. Compd. 850 (2021) 156672.
DOI URL |
[25] |
S. Takajo, C.C. Merriman, S.C. Vogel, D.P. Field, Acta Mater. 166 (2019) 100-112.
DOI |
[26] |
J. Xu, W. Zeng, Q. Zhao, D. Zhou, S. He, R. Jia, X. Zhou, Mater. Sci. Eng. A 803 (2021) 140723.
DOI URL |
[27] |
Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, K.C. Zhou, J. Alloy. Compd. 795 (2019) 471-482.
DOI |
[28] |
H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Logé, K. Huang, Mater. Des. 193 (2020) 108873.
DOI URL |
[29] |
Y. Ito, S. Murakami, N. Tsuji, Metall. Mater. Trans. A 48 (2017) 4237-4246.
DOI URL |
[30] |
J. Luo, P. Ye, W.C. Han, M.Q. Li, Mater. Des. 146 (2018) 152-162.
DOI URL |
[31] |
K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
[32] |
X.G. Fan, Y. Zhang, H.J. Zheng, Z.Q. Zhang, P.F. Gao, M. Zhan, Mater. Charact. 137 (2018) 151-161.
DOI URL |
[33] |
P. Yu, C.S. Wu, L. Shi, Acta Mater. 207 (2021) 116692.
DOI URL |
[34] |
K. Li, P. Yang, Metals 7 (2017) 1-8 Basel.
DOI URL |
[35] |
Z. Hu, X. Zhou, X. an Nie, S. Zhao, H. Liu, D. Yi, X. Zhang, J. Alloy. Compd. 788 (2019) 136-147.
DOI |
[36] |
J. Zhang, Y. Yi, S. Huang, X. Mao, H. He, J. Tang, W. Guo, F. Dong, Mater. Sci. Eng. A 804 (2021) 140650.
DOI URL |
[37] |
L. Huang, Z. Sun, J. Cao, Z. Yin, J. Alloy. Compd. 855 (2021) 157428.
DOI URL |
[38] |
N. Stanford, P.S. Bate, Acta Mater. 52 (2004) 5215-5224.
DOI URL |
[39] |
R. Shi, V. Dixit, H.L. Fraser, Y. Wang, Acta Mater. 75 (2014) 156-166.
DOI URL |
[40] |
F. Bruneseaux, E. Aeby-Gautier, G. Geandier, J. Da Costa Teixeira, B. Appolaire, P. Weisbecker, A. Mauro, Mater. Sci. Eng. A 476 (2008) 60-68.
DOI URL |
[41] |
F. Sun, J. Li, H. Kou, B. Tang, Y. Chen, H. Chang, J. Cai, J. Alloy. Compd. 576 (2013) 108-113.
DOI URL |
[42] |
C. Wu, Y. Zhao, S. Huang, Q. Sun, L. Zhou, J. Alloy. Compd. 841 (2020) 155728.
DOI URL |
[43] |
N. Haghdadi, R. DeMott, P.L. Stephenson, X.Z. Liao, S.P. Ringer, S. Primig, Mater. Des. 196 (2020) 109177.
DOI URL |
[44] |
D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88 (2015) 218-231.
DOI URL |
[45] |
S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang, Acta Mater. 106 (2016) 374-387.
DOI URL |
[46] |
D. Bhattacharyya, G.B. Viswanathan, H.L. Fraser, Acta Mater. 55 (2007) 6765-6778.
DOI URL |
[47] |
L. Meng, T. Kitashima, T. Tsuchiyama, M. Watanabe, Metall. Mater. Trans. A 52 (2021) 303-315.
DOI URL |
[48] |
Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, R. Yang, Acta Mater. 126 (2017) 372-382.
DOI URL |
[49] |
Z.B. Zhao, Q.J. Wang, J.R. Liu, R. Yang, J. Alloy. Compd. 712 (2017) 179-184.
DOI URL |
[50] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487.
DOI URL |
[51] |
G.C. Obasi, S. Birosca, J.Q. Da Fonseca, M. Preuss, Acta Mater. 60 (2012) 1048-1058.
DOI URL |
[1] | Wenjun Lu, Jianjun Li. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 102(0): 80-88. |
[2] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[3] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[4] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
[5] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[6] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[7] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[8] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[9] | Jun Mei, Qian Zhang, Hong Peng, Ting Liao, Ziqi Sun. Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 111(0): 181-188. |
[10] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
[11] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[12] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[13] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
[14] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
[15] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||