J. Mater. Sci. Technol. ›› 2022, Vol. 112: 230-238.DOI: 10.1016/j.jmst.2021.10.014
• Research Article • Previous Articles Next Articles
Received:
2021-08-01
Revised:
2021-10-11
Accepted:
2021-10-24
Published:
2021-12-11
Online:
2021-12-11
Contact:
Li Liu
About author:
* E-mail address: liuli@mail.neu.edu.cn (L. Liu).Rui Liu, Li Liu, Fuhui Wang. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review[J]. J. Mater. Sci. Technol., 2022, 112: 230-238.
Fig. 2. (a) Polarization curves and (b) capacitance-potential curves of B10 alloy in 3.5% NaCl solution under 0.1 MPa and 6.3 MPa hydrostatic pressures [34].
Fig. 5. Left panel: five NR measurements measured in 3.5% NaCl solution at different hydrostatic pressures. Solid curves are the fits corresponding to the SLD profiles shown in the middle and right panel. Right panel: magnified SLD distribution of the Al/Al2O3/liquid subphase region of the middle panel [51].
Fig. 6. . High-resolution bright-field TEM images of passive films formed at (a) 1 atm and (b) 80 atm. (c, d) Color-filtered TEM images of the two passive films. (e) Electron energy loss spectroscopy from the two passive films [52].
Fig. 7. The high-resolution HADDF images of the passive films formed on the outer surface of the top of the U-bend Ti-6Al-4V alloy in 3.5% NaCl solution after 0.25 V potentiostatic polarization. For the passive film prepared at 0.1 MPa hydrostatic pressure, (a) HADDF images along the [-24-23] direction of the α-Ti matrix and (b) along the [011] direction of the β-Ti matrix show a straight F/Me interface with slip steps. For the passive film prepared at 20 MPa hydrostatic pressure, (c) HADDF image along the [0001] direction of the α-Ti matrix shows a curved Me/F interface with slip steps, and (d) HADDF image along the [011] direction of the β-Ti matrix shows an undulating F/Me interface, where the slip steps disappear. Insets of panels (a-d) show the Fast Fourier Transform (FFT) images of the high-resolution HADDF images [58].
Fig. 8. Surface morphologies of X70 pipeline steel with different applied stresses in 3.5% NaCl solution after different durations at various hydrostatic pressures. (a) 0.1 MPa, no stress, t = 15 min, (b) 0.1 MPa, σ = 0.6σb, t = 200 h, (c) 5 MPa, σ = 0.6σb, t = 200 h, and (d) 10 MPa, σ= 0.6σb, t = 200 h. The units for the axes are micrometers (μm) [73].
Fig. 9. (a) High-resolution TEM images of Ti-6Al-4V after SSRT in 3.5% NaCl solution under 20 MPa, (b) electron diffraction pattern of δ hydrides in (a), and (c) schematic diagram of the higher hydrostatic pressure enhancing the hydrogen embrittlement of the titanium alloy [36].
[1] |
M.S. Lozier, F. Li, S. Bacon, F. Bahr, A.S. Bower, S.A. Cunningham, M.F. de Jong, L. de Steur, B. Deyoung, J. Fischer, S.F. Gary, B.J.W. Greenan, N.P. Holliday, A. Houk, L. Houpert, M.E. Inall, W.E. Johns, H.L. Johnson, C. Johnson, J. Karstensen, G. Koman, I.A. Le Bras, X. Lin, N. Mackay, D.P. Marshall, H. Mercier, M. Oltmanns, R.S. Pickart, A.L. Ramsey, D. Rayner, F. Straneo, V. Thierry, D.J. Torres, R.G. Williams, C. Wilson, J. Yang, I. Yashayaev, J. Zhao, Science 363 (2019) 516-521.
DOI PMID |
[2] |
A. Maxmen, Nature 561 (2018) 443-444.
DOI URL |
[3] |
S. Petersen, A. Krätschell, N. Augustin, J. Jamieson, J.R. Hein, M.D. Hannington, Mar. Policy 70 (2016) 175-187.
DOI URL |
[4] |
Y. Kato, K. Fujinaga, K. Nakamura, Y. Takaya, K. Kitamura, J. Ohta, R. Toda, T. Nakashima, H. Iwamori, Nat. Geosci. 4 (2011) 535-539.
DOI URL |
[5] |
S.Y. Lakhal, M.I. Khan, M.R. Islam, Ocean Coast. Manag. 52 (2009) 113-123.
DOI URL |
[6] |
G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, Z. Zhang, M. Zhang, B. Wu, S. Yin, Y. Xu, H. Fan, Z. Chen, W. Song, W. Yang, B. Pan, J. Hou, W. Zou, S. He, X. Yang, G. Mao, Z. Jia, H. Zhou, T. Li, S. Qu, Z. Xu, Z. Huang, Y. Luo, T. Xie, J. Gu, S. Zhu, W. Yang, Nature 591 (2021) 66-71.
DOI URL |
[7] |
T.J.P. Gwilliam, Ocean Eng. 3 (1976) 391-401.
DOI URL |
[8] |
M. Ho, S. El-Borgi, D. Patil, G. Song, Struct. Health Monit. 19 (2019) 606-645.
DOI URL |
[9] | W. Guo, W. Li, G. Chen, Equip. Environ. Eng. 3 (2006) 10-15. |
[10] | J. Wang, J. Meng, X. Tang, W. Zhang, J. Chin. Soc. Corros. Prot. 27 (2009) 1-7. |
[11] |
K. Ding, S. Liu, W. Cheng, J. Du, L. Fan, J. Hou, L. Xu, J. Mater. Eng. Perform. 30 (2021) 6027-6038.
DOI URL |
[12] |
X. Wang, L. Fan, K. Ding, L. Xu, W. Guo, J. Hou, T. Duan, J. Mater. Sci. Technol. 64 (2021) 187-194.
DOI URL |
[13] |
W. Peng, T. Duan, J. Hou, W. Guo, K. Ding, W. Cheng, L. Xu, Corros. Eng. Sci. Technol. 56 (2021) 327-340.
DOI URL |
[14] |
P. Traverso, E. Canepa, Ocean Eng. 87 (2014) 10-15.
DOI URL |
[15] | S.C. Dexter, Corrosion 36 (1980) 423-432. |
[16] |
R. Venkatesan, M.A. Venkatasamy, T.A. Bhaskaran, E.S. Dwarakadasa, M. Ravindran, Br. Corros. J. 37 (2002) 257-266.
DOI URL |
[17] | S.S. Sawant, K. Venkat, A.B. Wagh, Indian J. Technol. 31 (1993) 862-866. |
[18] | G. Luciano, P. Letardi, P. Traverso, L. Belsanti, Metall. Ital. 105 (2013) 21-29. |
[19] | I. Ulanovskii, V. Egorova, Prot. Met. 14 (1978) 137-139. |
[20] | W. Guo, M. Sun, R. Qiu, J. Hou, L. Fan, P. Kun, L. Xu, Corros. Sci. Prot. Technol. 29 (2017) 313-317. |
[21] |
K.K. Ding, W.M. Guo, R. Qiu, J. Hou, L. Fan, L.K. Xu, J. Mater. Eng. Perform. 27 (2018) 4489-4496.
DOI URL |
[22] | F.M. Reinhart, Corrosion of Metals and Alloys in the Deep Ocean, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California, 1976. |
[23] | I. Ulanovskii, Prot. Met. 15 (1979) 563-566. |
[24] |
T.G. Duan, W.S. Peng, K.K. Ding, W.M. Guo, J. Hou, W.H. Cheng, S.T. Liu, L.K. Xu, Ocean Eng. 189 (2019) 106405.
DOI URL |
[25] |
P. Ren, H. Meng, Q. Xia, Z. Zhu, M. He, Corros. Sci. 180 (2021) 109185.
DOI URL |
[26] |
E.D. Mor, A.M. Beccaria, Br. Corros. J. 13 (1978) 142-146.
DOI URL |
[27] |
A.M. Beccaria, G. Poggi, Br. Corros. J. 20 (1985) 183-186.
DOI URL |
[28] |
A.M. Beccaria, G. Poggi, Br. Corros. J. 21 (2013) 19-22.
DOI URL |
[29] |
T. Zhang, Y. Yang, Y. Shao, G. Meng, F. Wang, Electrochim. Acta 54 (2009) 3915-3922.
DOI URL |
[30] |
Y. Yang, T. Zhang, Y. Shao, G. Meng, F. Wang, Corros. Sci. 52 (2010) 2697-2706.
DOI URL |
[31] | B. Liu, T. Zhang, Y. Shao, G. Meng, J. Liu, F. Wang, Int. J. Electrochem. Sci. 7 (2012) 1864-1883. |
[32] |
A.M. Beccaria, P. Fiordiponti, G. Mattogno, Corros. Sci. 29 (1989) 403-416.
DOI URL |
[33] |
A.M. Beccaria, G. Poggi, G. Castello, Br. Corros. J. 30 (1995) 283-287.
DOI URL |
[34] |
S. Hu, L. Liu, Y. Cui, Y. Li, F. Wang, Corros. Sci. 146 (2019) 202-212.
DOI URL |
[35] | Q.S. Li, S.Z. Luo, X.T. Xing, J. Yuan, X. Liu, J.H. Wang, W.B. Hu, Acta Metall. Sin. Engl. Lett. 32 (2018) 972-980. |
[36] |
R. Liu, Y. Cui, L. Liu, B. Zhang, F. Wang, Corros. Sci. 165 (2020) 108402.
DOI URL |
[37] | R.Y. Ma, C.G. Wang, X. Mu, X. Wei, L. Zhao, J.H. Dong, W. Ke, Acta Metall. Sin. 55 (2019) 859-874. |
[38] |
F.L. Sun, S. Ren, Z. Li, Z.Y. Liu, X.G. Li, C.W. Du, Mater. Sci. Eng. A Struct. 685 (2017) 145-153.
DOI URL |
[39] |
C. Zhang, Z.W. Zhang, Q. Chen, L. Liu, J. Alloy. Compd. 758 (2018) 108-115.
DOI URL |
[40] |
Z.X. Yang, B. Kan, J.X. Li, Y.J. Su, L.J. Qiao, J. Electroanal. Chem. 822 (2018) 123-133.
DOI URL |
[41] |
H. Sun, L. Liu, Y. Li, L. Ma, Y. Yan, Corros. Sci. 77 (2013) 77-87.
DOI URL |
[42] |
S. Hu, R. Liu, L. Liu, Y. Cui, E.E. Oguzie, F. Wang, Corros. Sci. 163 (2020) 108242.
DOI URL |
[43] |
A.M. El-Aziz, R. Hoyer, L.A. Kibler, D.M. Kolb, Electrochim. Acta 51 (2006) 2518-2522.
DOI URL |
[44] |
M.S. Morad, A.A.O. Sarhan, Corros. Sci. 50 (2008) 744-753.
DOI URL |
[45] | H. Sun, L. Liu, Y. Li, F. Wang, J. Electrochem. Soc. 160 (2013) C89-C96. |
[46] | R.Y. Ma, L. Zhao, C.G. Wang, X. Mu, X. Wei, J.H. Dong, W. Ke, Acta Metall. Sin. 55 (2019) 281-290. |
[47] |
X.L. Xiong, X.J. Ban, Y. Yan, Y.J. Su, J. Electroanal. Chem. 871 (2020) 114306.
DOI URL |
[48] |
R. Liu, Y. Cui, L. Liu, F. Wang, Acta Mater. 203 (2021) 116467.
DOI URL |
[49] | A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc, New York, 2001. |
[50] |
A.M. Beccaria, G. Poggi, D. Gingaud, P. Castello, Br. Corros. J. 29 (1994) 65-69.
DOI URL |
[51] |
A. Junghans, R. Chellappa, P. Wang, J. Majewski, G. Luciano, R. Marcelli, E. Proietti, Corros. Sci. 90 (2015) 101-106.
DOI URL |
[52] |
C. Zhang, Z.W. Zhang, L. Liu, Electrochim. Acta 210 (2016) 401-406.
DOI URL |
[53] |
M.J. Duarte, J. Klemm, S.O. Klemm, K.J.J. Mayrhofer, M. Stratmann, S. Borodin, A.H. Romero, M. Madinehei, D. Crespo, J. Serrano, S.S.A. Gerstl, P.P. Choi, D. Raabe, F.U. Renner, Science 341 (2013) 372-376.
DOI PMID |
[54] |
M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Nature 415 (2002) 770-774.
DOI URL |
[55] |
Y. Yang, T. Zhang, Y. Shao, G. Meng, F. Wang, Corros. Sci. 73 (2013) 250-261.
DOI URL |
[56] |
Y.G. Pronina, Corros. Sci. 100 (2015) 672-673.
DOI URL |
[57] |
L.Y. Xu, Y.F. Cheng, Corros. Sci. 73 (2013) 150-160.
DOI URL |
[58] |
R. Liu, Y. Cui, B. Zhang, L. Liu, F. Wang, Corros. Sci. 190 (2021) 109705.
DOI URL |
[59] |
B. Kan, W. Wu, Z. Yang, X. Zhang, J. Li, J. Electroanal. Chem. 886 (2021) 115134.
DOI URL |
[60] |
L. Song, Z. Liu, J. Hu, X. Li, C. Du, Y. Li, Y. Pan, J. Mater. Eng. Perform. 29 (2020) 5476-5489.
DOI URL |
[61] | S. Qu, B. Cheng, L. Dong, Y. Yin, L. Yang, Acta Metall. Sin. 54 (2018) 1094-1104. |
[62] |
T. Bellezze, G. Giuliani, A. Viceré, G. Roventi, Corros. Sci. 130 (2018) 12-21.
DOI URL |
[63] |
Z. Gan, C. Zhang, Z.R. Zhang, Z.J. Chen, L. Liu, Corros. Sci. 179 (2021) 109098.
DOI URL |
[64] |
S. Hu, R. Liu, L. Liu, Y. Cui, F. Wang, J. Mater. Res. Technol. 13 (2021) 1402-1415.
DOI URL |
[65] |
J. Błachut, P. Smith, Ocean Eng. 35 (2008) 247-260.
DOI URL |
[66] | E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publication, Singapore, 1994. |
[67] |
X.Z. Zheng, H. Castaneda, H.J. Gao, A. Srivastava, Corros. Sci. 153 (2019) 53-61.
DOI URL |
[68] |
M. Sun, K. Xiao, C. Dong, X. Li, P. Zhong, Corros. Sci. 89 (2014) 137-145.
DOI URL |
[69] |
Q. Zhao, E. Fan, S. Wang, J. Zhao, Y. Huang, X. Li, J. Mater. Eng. Perform. 30 (2021) 2159-2173.
DOI URL |
[70] | H. Xu, L. Li, L. Peng, H. San, M. Wu, X. Su, Int. J. Electrochem. Sci. 16 (2021) 210536. |
[71] |
L. Song, Z. Liu, J. Hu, X. Li, C. Du, Y. Li, Y. Pan, J. Mater. Eng. Perform. 29 (2020) 5476-5489.
DOI URL |
[72] | Y. Li, L.F. Song, F.L. Sun, Int. J. Electrochem. Sci. 13 (2018) 10155-10172. |
[73] |
Z.X. Yang, B. Kan, J.X. Li, Y.J. Su, L.J. Qiao, Int. J. Hydrog. Energy 42 (2017) 27446-27457.
DOI URL |
[74] |
X.L. Xiong, X. Tao, Q.J. Zhou, J.X. Li, A .A. Volinsky, Y.J. Su, Corros. Sci. 112 (2016) 86-93.
DOI URL |
[75] |
X.L. Xiong, H.X. Ma, X. Tao, J.X. Li, Y.J. Su, Q.J. Zhou, A.A. Volinsky, Electrochim. Acta 255 (2017) 230-238.
DOI URL |
[76] |
X.L. Xiong, Q.J. Zhou, J.X. Li, A .A. Volinsky, Y.J. Su, Electrochim. Acta 247 (2017) 1019-1029.
DOI URL |
[77] |
X.L. Xiong, Y. Xiang, J.X. Li, Y.J. Su, Q.J. Zhou, A.A. Volinsky, Electrochim. Acta 283 (2018) 1534-1542.
DOI URL |
[78] |
L. Liu, Y. Cui, Y. Li, T. Zhang, F. Wang, Electrochim. Acta 62 (2012) 42-50.
DOI URL |
[79] |
F. Meng, T. Zhang, L. Liu, Y. Cui, F. Wang, Surf. Coat. Technol. 361 (2019) 188-195.
DOI URL |
[80] |
W. Tian, L. Liu, F. Meng, Y. Liu, Y. Li, F. Wang, Corros. Sci. 86 (2014) 81-92.
DOI URL |
[81] | W. Tian, F. Meng, L. Liu, Y. Li, F. Wang, Prog. Org. Coat. 82 (2015) 101-112. |
[82] |
R. Liu, L. Liu, W. Tian, Y. Cui, F. Wang, J. Mater. Sci. Technol. 64 (2021) 233-240.
DOI URL |
[83] |
Y. Liu, J. Wang, L. Liu, Y. Li, F. Wang, Corros. Sci. 74 (2013) 59-70.
DOI URL |
[84] |
F. Meng, L. Liu, Y. Cui, F. Wang, J. Mater. Sci. Technol. 64 (2021) 165-175.
DOI URL |
[85] | R. Liu, L. Liu, F. Meng, W. Tian, Y. Liu, Y. Li, F. Wang, Prog. Org. Coat. 123 (2018) 168-175. |
[86] |
F. Meng, L. Liu, W. Tian, H. Wu, Y. Li, T. Zhang, F. Wang, Corros. Sci. 101 (2015) 139-154.
DOI URL |
[87] |
J.F. Ou, X.Z. Fang, W.J. Zhao, S. Lei, M.S. Xue, F.J. Wang, C.Q. Li, Y.L. Lu, W. Li, Langmuir 34 (2018) 5807-5812.
DOI PMID |
[88] |
S.R. German, M.A. Edwards, Q. Chen, H.S. White, Nano Lett. 16 (2016) 6691-6694.
PMID |
[89] |
A.M. Soto, S.R. German, H. Ren, D. van der Meer, D. Lohse, M.A. Edwards, H.S. White, Langmuir 34 (2018) 7309-7318.
DOI URL |
[90] |
X. Li, K. Lu, Science 364 (2019) 733-734.
DOI URL |
[1] | Xubing Wei, Shaomiao Shi, Chuangming Ning, Zhibin Lu, Guangan Zhang. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application [J]. J. Mater. Sci. Technol., 2022, 109(0): 114-128. |
[2] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[3] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[4] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[5] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[6] | Da-Hai Xia, Cheng-Man Deng, Digby Macdonald, Sina Jamali, Douglas Mills, Jing-Li Luo, Michael G. Strebl, Mehdi Amiri, Weixian Jin, Shizhe Song, Wenbin Hu. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112(0): 151-183. |
[7] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[8] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[9] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[10] | Cunxiu Zhang, Xiaolong Lu, Cong Wang, Xudong Sui, Yanfang Wang, Haibin Zhou, Junying Hao. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow [J]. J. Mater. Sci. Technol., 2022, 107(0): 172-182. |
[11] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[12] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
[13] | Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107(0): 43-51. |
[14] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[15] | Suyun Liu, Xuewan Wang, Qi Yin, Xiongzhi Xiang, Xian-Zhu Fu, Xian-Zong Wang, Jing-Li Luo. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112(0): 263-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||