J. Mater. Sci. Technol. ›› 2022, Vol. 107: 290-300.DOI: 10.1016/j.jmst.2021.08.024
• Research Article • Previous Articles
Yunwei Pana, Anping Donga,*(), Yang Zhoua,*(
), Dafan Dua, Donghong Wanga, Guoliang Zhua, Baode Suna,b
Received:
2021-06-02
Revised:
2021-06-02
Accepted:
2021-06-02
Published:
2022-04-30
Online:
2022-04-28
Contact:
Anping Dong,Yang Zhou
About author:
yzhou76@sjtu.edu.cn (Y. Zhou).Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy[J]. J. Mater. Sci. Technol., 2022, 107: 290-300.
Fig. 4. X-ray diffraction patterns for alloys aged at 650 °C for 48 h: (a) Ni2CoCr-4Nb; (b) Ni2CoCr-4Nb4V. TEM DF images of alloys aged at 650 °C for 48 h: (a1) Ni2CoCr-4Nb; (b1) Ni2CoCr-4Nb4V. SADPs along [001] zone axes of aged alloys: (a2) Ni2CoCr-4Nb; (b2) Ni2CoCr-4Nb4V.
Alloy designation | Compositions (at.%) | |
---|---|---|
γ | γ" | |
Ni2CoCr-4Nb | Ni-26.1Co-23.9Cr-2.3Nb | Ni-23.5Co-7.9Cr-13.7Nb |
Ni2CoCr-4Nb4V | Ni-22.5Co-24.1Cr-2.6Nb-3.8V | Ni-19.2Co-5.2Cr-15.9Nb-5.6V |
Table 1 Composition of the γ and γ" phases in presented alloys.
Alloy designation | Compositions (at.%) | |
---|---|---|
γ | γ" | |
Ni2CoCr-4Nb | Ni-26.1Co-23.9Cr-2.3Nb | Ni-23.5Co-7.9Cr-13.7Nb |
Ni2CoCr-4Nb4V | Ni-22.5Co-24.1Cr-2.6Nb-3.8V | Ni-19.2Co-5.2Cr-15.9Nb-5.6V |
Fig. 8. (a) Comparison of Vickers microhardness of alloys under different heat treatment regime; (b) Comparison of density between presented alloys and commercial NiCoCr-based superalloys.
Fig. 9. (a) Mean CTE of the Ni2CoCr-4Nb and Ni2CoCr-4Nb4V. Comparison of (b) the yield strength and (c) specific yield strength versus temperature curves of Ni2CoCr-4Nb, Ni2CoCr-4Nb4V, Waspaloy [16] and IN 939 [72].
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater., 6 (2004), pp. 299-303.
DOI URL |
[2] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci., 61 (2014), pp. 1-93.
DOI URL |
[3] |
Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Scr. Mater., 94 (2015), pp. 28-31.
DOI URL |
[4] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater, 124 (2017), pp. 143-150.
DOI URL |
[5] | E.P. George, D. Raabe, R.O. Ritchie, Nature Rev. Mater., 4 (2019), pp. 515-534. |
[6] |
G. Qin, R. Chen, P.K. Liaw, Y. Gao, X. Li, H. Zheng, L. Wang, Y. Su, J. Guo, H. Fu, Scr. Mater., 172 (2019), pp. 51-55.
DOI URL |
[7] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. Chin. Mater., 61 (2018), pp. 2-22.
DOI URL |
[8] |
A. Gali, E.P. George, Intermetallics, 39 (2013), pp. 74-78.
DOI URL |
[9] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature, 534 (2016), pp. 227-230.
DOI URL |
[10] |
D.B. Miracle, O.N. Senkov, Acta Mater., 122 (2017), pp. 448-511.
DOI URL |
[11] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun., 7 (2016), p. 10602.
DOI PMID |
[12] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater., 81 (2014), pp. 428-441.
DOI URL |
[13] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun., 8 (2017), p. 14390.
DOI URL |
[14] | D. Xie, R. Feng, P.K. Liaw, H. Bei, Y. Gao, Intermetallics, 121 (2020), Article 106775. |
[15] | R. Reed, The Superalloys, Cambridge University Press, Cambridge, UK(2006). |
[16] | Properties and selection: irons, steels, and high-performance alloys, ASM Handbook (1990), p. 01. |
[17] | C.E. Slone, E.P. George, M.J. Mills, J. Alloy. Compd., 817 (2020), Article 152777. |
[18] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater., 61 (2013), pp. 4887-4897.
DOI URL |
[19] |
G. Meyrick, G.W. Powell, Annu. Rev. Mater. Sci., 3 (1973), pp. 327-362.
DOI URL |
[20] | R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials,(4th ed.), John Wiley & Sons Inc., Hoboken, New Jersey (1996), pp. 157-201. |
[21] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater., 128 (2017), pp. 292-303.
DOI URL |
[22] |
D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, J. Alloy. Compd., 800 (2019), pp. 372-378.
DOI URL |
[23] | N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, X. Hui, Mater. Sci. Eng. A, 798 (2020), Article 140213. |
[24] |
T. Matsuo, K. Nakajima, Y. Terada, M. Kikuchi, Mater. Sci. Eng. A, 146 (1991), pp. 261-272.
DOI URL |
[25] |
D.V.V. Satyanarayana, G. Malakondaiah, D.S. Sarma, Mater. Sci. Eng. A, 323 (2002), pp. 119-128.
DOI URL |
[26] |
L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, X. Ma, J. Mater. Sci. Technol., 35 (2019), pp. 300-305.
DOI URL |
[27] | D. Furrer, H. Fecht, JOM, 51 (1999), pp. 14-17. |
[28] |
K. Maile, Procedia Eng., 55 (2013), pp. 214-220.
DOI URL |
[29] |
T.M. Pollock, S. Tin, J. Propul. Power, 22 (2006), pp. 361-374.
DOI URL |
[30] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater., 102 (2016), pp. 187-196.
DOI URL |
[31] |
Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Scr. Mater., 148 (2018), pp. 51-55.
DOI URL |
[32] |
T. Yang, Y. Zhao, W. Liu, J. Kai, C. Liu, J. Mater. Res., 33 (2018), pp. 2983-2997.
DOI URL |
[33] |
B. Han, J. Wei, Y. Tong, D. Chen, Y. Zhao, J. Wang, F. He, T. Yang, C. Zhao, Y. Shimizu, K. Inoue, Y. Nagai, A. Hu, C.T. Liu, J.J. Kai, Scr. Mater., 148 (2018), pp. 42-46.
DOI URL |
[34] | Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, E.J. Lavernia, Sci. Adv., 4 (2018), p. eaat8712. |
[35] |
Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Acta Mater., 147 (2018), pp. 213-225.
DOI URL |
[36] |
Y.-.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun., 9 (2018), p. 4063.
DOI URL |
[37] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science, 362 (2018), p. 933.
DOI PMID |
[38] | X. Bai, W. Fang, R. Chang, H. Yu, X. Zhang, F. Yin, Mater. Sci. Eng. A, 767 (2019), Article 138403. |
[39] | Y. Chen, H.W. Deng, Z.M. Xie, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, R. Liu, X.P. Wang, Q.F. Fang, C.S. Liu, J. Alloy. Compd., 828 (2020), Article 154457. |
[40] |
D. Liu, P. Yu, G. Li, P.K. Liaw, R. Liu, Mater. Sci. Eng. A, 724 (2018), pp. 283-288.
DOI URL |
[41] |
T. Yang, Y.L. Zhao, B.X. Cao, J.J. Kai, C.T. Liu, Scr. Mater., 183 (2020), pp. 39-44.
DOI URL |
[42] |
Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater., 188 (2020), pp. 517-527.
DOI URL |
[43] | Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, A. Shan, Mater. Charact., 159 (2020), Article 109989. |
[44] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater., 138 (2017), pp. 72-82.
DOI URL |
[45] |
A.J. Ardell, Metall. Trans. A, 16 (1985), pp. 2131-2165.
DOI URL |
[46] |
F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C.T. Liu, J.J. Kai, Acta Mater., 167 (2019), pp. 275-286.
DOI URL |
[47] | Y. Pan, A. Dong, Y. Zhou, D. Du, D. Wang, G. Zhu, B. Sun, Mater. Sci. Eng. A, 816 (2021), Article 141289. |
[48] |
A.J. Knowles, L. Reynolds, V.A. Vorontsov, D. Dye, Scr. Mater., 162 (2019), pp. 472-476.
DOI URL |
[49] |
J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad, 26 (2002), pp. 273-312.
DOI URL |
[50] |
D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Acta Mater., 98 (2015), pp. 288-296.
DOI URL |
[51] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater., 116 (2016), pp. 332-342.
DOI URL |
[52] |
C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, C.T. Liu, J. Alloy. Compd., 584 (2014), pp. 530-537.
DOI URL |
[53] |
R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, P.A. Midgley, Acta Mater., 130 (2017), pp. 271-280.
DOI URL |
[54] |
D. Srinivasan, Mater. Sci. Eng. A, 364 (2004), pp. 27-34.
DOI URL |
[55] |
Y. Du, Y.A. Chang, W. Gong, B. Huang, H. Xu, Z. Jin, F. Zhang, S.L. Chen, Intermetallics, 11 (2003), pp. 995-1013.
DOI URL |
[56] |
S. Azadian, L.-.Y. Wei, R. Warren, Mater. Charact., 53 (2004), pp. 7-16.
DOI URL |
[57] |
Y. Huang, T.G. Langdon, J. Mater. Sci., 42 (2007), pp. 421-427.
DOI URL |
[58] |
H. Sugimura, Y. Kaneno, T. Takasugi, Mater. Trans., 52 (2011), pp. 663-671.
DOI URL |
[59] | J.J. Ruan, N. Ueshima, K. Oikawa, J. Alloy. Compd., 814 (2020), Article 152289. |
[60] |
M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Metall. Trans. A, 19 (1988), pp. 453-465.
DOI URL |
[61] | J. Dong, X. Xie, Z. Xu, S. Zhang, J.P. Radavich, Superalloys 718, 625, 706 and Various Derivatives, The minerals, E.A. Loria(Eds.), Metals & Materials Society(1994), pp. 649-658. |
[62] |
H. Kato, S. Semboshi, Y. Kaneno, T. Takasugi, Metall. Mater. Trans. A, 51 (2020), pp. 2469-2479.
DOI URL |
[63] |
M. Rafiei, H. Mirzadeh, M. Malekan, J. Alloy. Compd., 795 (2019), pp. 207-212.
DOI URL |
[64] |
Y. Nunomura, Y. Kaneno, H. Tsuda, T. Takasugi, Acta Mater., 54 (2006), pp. 851-860.
DOI URL |
[65] |
S. Shibuya, Y. Kaneno, M. Yoshida, T. Takasugi, Acta Mater., 54 (2006), pp. 861-870.
DOI URL |
[66] |
M. Krćmar, C.L. Fu, A. Janotti, R.C. Reed, Acta Mater., 53 (2005), pp. 2369-2376.
DOI URL |
[67] | A. Janotti, M. Krčmar, C.L. Fu, R.C. Reed, Phys. Rev. Lett., 92 (2004), Article 085901. |
[68] |
J. Ruan, W. Xu, T. Yang, J. Yu, S. Yang, J. Luan, T. Omori, C. Wang, R. Kainuma, K. Ishida, C.T. Liu, X. Liu, Acta Mater., 186 (2020), pp. 425-433.
DOI URL |
[69] |
C. Rowolt, B. Milkereit, P. Andreazza, O. Kessler, Thermochim. Acta, 677 (2019), pp. 169-179.
DOI URL |
[70] |
M.R. Jahangiri, S.M.A. Boutorabi, H. Arabi, Mater. Sci. Technol., 28 (2012), pp. 1402-1413.
DOI URL |
[71] |
Q. Ding, Z. Shi, M. Xu, N. Sun, C. Li, J. Han, Y. Lu, S. Yang, C. Wang, X. Liu, W. Xu, Comput. Mater. Sci., 152 (2018), pp. 178-182.
DOI URL |
[72] | C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II, John Wiley & Sons Inc., Hoboken, New Jersey (1987), pp. 580-585. |
[73] |
H. Zhang, C. Li, Y. Liu, Q. Guo, Y. Huang, H. Li, J. Yu, J. Alloy. Compd., 716 (2017), pp. 65-72.
DOI URL |
[1] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[2] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[3] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[4] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[5] | Weigui Zhang, Kun Li, Runqiang Chi, Susheng Tan, Peijie Li. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact [J]. J. Mater. Sci. Technol., 2021, 91(0): 40-57. |
[6] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[7] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[8] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[9] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[10] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[11] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[12] | Kai Xu, Keke Chang, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part I. Al-Si-Y and Ni-Si-Y subsystems [J]. J. Mater. Sci. Technol., 2021, 88(0): 66-78. |
[13] | Kai Xu, Keke Chang, Miao Yu, Dapeng Zhou, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset [J]. J. Mater. Sci. Technol., 2021, 89(0): 186-198. |
[14] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[15] | Liang Lan, Xinyuan Jin, Shuang Gao, Bo He, Yonghua Rong. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50(0): 153-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||