J. Mater. Sci. Technol. ›› 2022, Vol. 107: 266-289.DOI: 10.1016/j.jmst.2021.08.043
Special Issue: Al-based alloys 2022; Composites 2022; Fibers 2022; Modeling and simulations 2022; Polymers 2022
• Research Article • Previous Articles Next Articles
Peihao Genga,*(), Ninshu Maa,*(
), Hong Mab, Yunwu Maa, Kazuki Murakamia, Huihong Liua, Yasuhiro Aokia, Hidetoshi Fujiia
Received:
2021-03-18
Revised:
2021-03-18
Accepted:
2021-03-18
Published:
2022-04-30
Online:
2022-04-28
Contact:
Peihao Geng, Ninshu Ma
Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation[J]. J. Mater. Sci. Technol., 2022, 107: 266-289.
Element (wt%) | Ti | Mg | Mn | Si | Fe | Cu | Zn | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
AA6061 | 0.15 | 0.8-1.2 | 0.15 | 0.4-0.8 | 0.7 | 0.15-0.4 | 0.25 | 0.04-0.35 | Bal. |
Table 1 Chemical composition of AA6061-T6 alloy.
Element (wt%) | Ti | Mg | Mn | Si | Fe | Cu | Zn | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
AA6061 | 0.15 | 0.8-1.2 | 0.15 | 0.4-0.8 | 0.7 | 0.15-0.4 | 0.25 | 0.04-0.35 | Bal. |
Welding condition | Selection |
---|---|
Workpiece material | AA6061-T6, CFRP |
Tool material | SKD steel |
Solidus temperature of Al workpiece ( °C) | 582 |
Melting and decomposing temperature of resin matrix ( °C) | 220 and 340 |
The tool should diameter (mm) | 15 |
Rotational velocity (rpm) | 1000-1500 |
Plunging depth (mm) | 0.3,0.6 |
Plunge speed (mm/s) | 0.1,0.2 |
Table 2 Weld conditions used in the experiment.
Welding condition | Selection |
---|---|
Workpiece material | AA6061-T6, CFRP |
Tool material | SKD steel |
Solidus temperature of Al workpiece ( °C) | 582 |
Melting and decomposing temperature of resin matrix ( °C) | 220 and 340 |
The tool should diameter (mm) | 15 |
Rotational velocity (rpm) | 1000-1500 |
Plunging depth (mm) | 0.3,0.6 |
Plunge speed (mm/s) | 0.1,0.2 |
Parameters | Materials | 20 | 100 | 200 | 300 | 400 | 500 | 600 |
---|---|---|---|---|---|---|---|---|
Thermal conductivity(W/m•K) | AA6061 | 195 | 200 | 206 | 208 | 206 | 199 | 195 |
CFRP | 0.427 | 0.435 | 0.512 | - | - | - | - | |
Specific heat(J/kg•K) | AA6061 | 900 | 950 | 1000 | 1020 | 1050 | 1090 | 1200 |
CFRP | 1310 | 1950 | 2860 | - | - | - | - | |
Young's modulus(GPa) | AA6061 | 65 | 58 | 51 | 42.5 | 30.3 | 12.6 | 3 |
CFRP | 11.3 | 5.35 | 4.20 | - | - | - | - |
Table 3 Thermo-physical and mechanical properties of AA6061 and CFRP.
Parameters | Materials | 20 | 100 | 200 | 300 | 400 | 500 | 600 |
---|---|---|---|---|---|---|---|---|
Thermal conductivity(W/m•K) | AA6061 | 195 | 200 | 206 | 208 | 206 | 199 | 195 |
CFRP | 0.427 | 0.435 | 0.512 | - | - | - | - | |
Specific heat(J/kg•K) | AA6061 | 900 | 950 | 1000 | 1020 | 1050 | 1090 | 1200 |
CFRP | 1310 | 1950 | 2860 | - | - | - | - | |
Young's modulus(GPa) | AA6061 | 65 | 58 | 51 | 42.5 | 30.3 | 12.6 | 3 |
CFRP | 11.3 | 5.35 | 4.20 | - | - | - | - |
A (MPa) | B (MPa) | n | C | m | TM ( °C) | TS ( °C) |
---|---|---|---|---|---|---|
293.4 | 121.26 | 0.23 | 0.002 | 1.34 | 582 | 22 |
Table 4 Material constants for the Johnson-Cook constitutive model for AA6061-T6 alloy [46].
A (MPa) | B (MPa) | n | C | m | TM ( °C) | TS ( °C) |
---|---|---|---|---|---|---|
293.4 | 121.26 | 0.23 | 0.002 | 1.34 | 582 | 22 |
Fig. 10. Top surface morphology of the typical flat friction spot joints: (a) w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm, (b) w = 1250 rpm, v = 0.1 mm/s, d = 0.3 mm, (c) w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm and (d) w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm.
Welding parameters | w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1250 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm |
---|---|---|---|---|
Shear strength (MPa) | 5.96 | 5.69 | 4.56 | 4.35 |
Table 5 The average shear strength of joints at different conditions used in the study.
Welding parameters | w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1250 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm | w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm |
---|---|---|---|---|
Shear strength (MPa) | 5.96 | 5.69 | 4.56 | 4.35 |
Fig. 15. Comparison between numerically predicted and experimentally measured thermal data: (a) thermal history at the top surface of AA6061-T6 sheet close to the tool edge, and (b) melted area profile at the surface of CFRP side.
Fig. 16. Comparison between numerical predicted and experimentally analyzed melted and decomposed area profiles at three welding parameters. (a) w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm, (b) w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm (c) w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm.
Case | Diameter of melted area (mm) | Error (%) | Diameter of decomposition area (mm) | Error (%) | ||
---|---|---|---|---|---|---|
Predict | Experiment | Predict | Experiment | |||
w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm | 12.8 | 11.2 | 14.3 | 8.6 | 8.5 | 1.2 |
w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm | 13.7 | 12.7 | 7.9 | 8.8 | 8.9 | 1.1 |
w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm | 17.0 | 15.8 | 7.6 | 10.1 | 10.8 | 6.9 |
Table 6 Numerical predicted error of the melted and thermal decomposition areas.
Case | Diameter of melted area (mm) | Error (%) | Diameter of decomposition area (mm) | Error (%) | ||
---|---|---|---|---|---|---|
Predict | Experiment | Predict | Experiment | |||
w = 1000 rpm, v = 0.1 mm/s, d = 0.3 mm | 12.8 | 11.2 | 14.3 | 8.6 | 8.5 | 1.2 |
w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm | 13.7 | 12.7 | 7.9 | 8.8 | 8.9 | 1.1 |
w = 1500 rpm, v = 0.1 mm/s, d = 0.6 mm | 17.0 | 15.8 | 7.6 | 10.1 | 10.8 | 6.9 |
Fig. 17. Transient heat flux distribution at the Al surface (a) and the weld surface of the CFRP side (b) at different heating times and cooling times. (w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm).
Fig. 18. (a) Vector field of thermal conduction inside the joint during the process and (b) Distribution of the heat flux on the CFRP surface (w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm).
Fig. 19. Dissipation of friction work and plastic work in process (a) evolution at w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm, and (b) effect of welding parameters on friction dissipation energy.
Fig. 20. Temperature field of friction spot joint of 6061 Al alloy and CFRP sheets at w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm: (a) top surface of Al alloy, (b) weld surface of CFRP, (c) cross-sectional view of joint.
Fig. 21. Evolution of peak temperature (a) and interfacial temperature at on the interface (b) in friction spot joint of 6061 Al alloy and CFRP sheets. (w = 1500 rpm, v = 0.1 mm/s, d = 0.3 mm).
Fig. 22. Effects of welding parameters on (a) the weld surface of CFRP and (b) the duration time of surface temperature higher than the melting or decomposition temperatures.
Fig. 23. Predicted melted area on the CFRP surface by the developed numerical model at different welding parameters: (a, c) varied rotation velocity, (b, d) varied plunging speed.
Fig. 24. Variation of the melted and decomposition area dimensions on the CFRP surface with welding parameters: (a) varied rotation velocity, (b) varied plunging speed.
Fig. 26. Fractured surface of the joints by confirmatory experiments and validated simulation results at (a) w = 500 rpm, v = 0.1 mm/s, d = 0.6 mm and (b) w = 250 rpm, v = 0.05 mm/s, d = 0.3 mm, and (c)-(d) tensile shear testing results.
Fig.28. Fractured surface of the joints by confirmatory experiments and validated simulation results at (a) w=500 rpm, v=0.1mm/s, d=0.6 mm and (b) w=250 rpm,v=0.05 mm/s, d=0.3 mm, and (c, d) tensileshear testing results.
[1] | Y. Li, Y. Ma, M. Lou, G. Zhang, Q. Zhang, L. Qi, L. Deng, J. Mech. Eng., 56 (6) (2020), pp. 125-146. |
[2] |
K. Chen, X. Liu, J. Ni, J. Mater. Process. Technol., 249 (2017), pp. 452-462.
DOI URL |
[3] |
X. Sun, Q. Zhang, S. Wang, X. Han, Y. Li, S.A. David, J. Manuf. Process., 51 (2020), pp. 62-72.
DOI URL |
[4] |
Z. Shen, Y. Ding, J. Chen, B.S. Amirkhiz, J.Z. Wen, L. Fu, A.P. Gerlich, J. Mater. Sci. Technol., 35 (6) (2019), pp. 1027-1038.
DOI |
[5] |
Y. Ma, M. Lou, Y. Li, Z. Lin, J. Mater. Process. Technol., 251 (2018), pp. 282-294.
DOI URL |
[6] | H. Ali Khan, J. Li, C Shao, J. Manuf. Sci. Eng., 139 (9) (2017). |
[7] | B. Jiang, Q. Chen, J Yang, Int. J. Adv. Manuf. Technol. (2020), pp. 1-9. |
[8] |
A. Pramanik, A.K. Basak, Y. Dong, P.K. Sarker, M.S. Uddin, G. Littlefair, A.R. Dixit, S. Chattopadhyaya, Compos. Part A, 101 (2017), pp. 1-29.
DOI URL |
[9] | X. Meng, Y. Huang, J. Cao, J. Shen, J.F. dos Santos, Prog. Mater. Sci. (2020), Article 100706. |
[10] |
A.B. Abibe, M. S?nego, J.F. dos Santos, L.B. Canto, S.T. Amancio-Filho, Mater. Des., 92 (2016), pp. 632-642.
DOI URL |
[11] | F. Lambiase, A. Paoletti, J. Manuf. Processes, 31 (2018), pp. 812-822. |
[12] |
Y. Huang, X. Meng, Y. Xie, J. Li, L. Wan, Compos. Part B Eng., 163 (2019), pp. 217-223.
DOI URL |
[13] | H. Ali Khan, J. Li, C Shao, J. Manuf. Sci. Eng., 139 (9) (2017). |
[14] | P.C. Wang, R. Stevenson, Friction Stir Rivet Method of Joining, GM Global Technology Operations, Inc. (2011). |
[15] |
J. Min, Y. Li, J. Li, B.E. Carlson, J. Lin, Int. J. Adv. Manuf. Technol., 76 (5-8) (2015), pp. 1403-1410.
DOI URL |
[16] | Y. Li, Z. Wei, Z. Wang, Y. Li, J. Manuf. Sci. Eng., 135 (6) (2013). |
[17] | Y. Ma, H. Shan, S. Niu, Y. Li, Z. Lin, N. Ma, Engineering (2020). |
[18] | Y. Ma, B. Yang, M. Lou, Y. Li, N. Ma, J. Mater. Process. Technol., 278 (2020), Article 116543. |
[19] | X. Meng, Y. Huang, Y. Xie, J. Li, M. Guan, L. Wan, Z. Dong, J. Cao, Compos. Part A, 127 (2019), Article 105624. |
[20] |
Y.C. Lim, H. Park, J. Jang, J.W. McMurray, B.S. Lokitz, J.K. Keum, Z. Wu, Z. Feng, 2018), p. Metals, 8 (11)865.
DOI URL |
[21] | R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fujimoto, M. Inuzuka, Y. Nagao, K. Kashiki, Development of spot FSW robot system for automobile body members, Proceedings of the 3rd International Symposium of Friction Stir Welding, Kobe, Japan, CD-ROM (2004). |
[22] | F. Lambiase, A. Paoletti, A. Di Ilio, Int. J. Adv. Manuf. Technol., 80 (1-4) (2015), pp. 301-314. |
[23] | F. Yusof, M.R. Muhamad, R. Moshwan, M.F. Jamaludin, Y. Miyashita, Metals, 6 (5) (2016), p. 101. |
[24] | F. Yusof, Y. Miyashita, N. Seo, Y. Mutoh, R. Moshwan, Sci. Technol. Weld. Join., 17 (7) (2012), pp. 544-549. |
[25] | Y. Ogawa, Y. Xiong, H. Akebono, M. Kato, K. Tanaka, A. Sugeta, Sci. Technol. Weld. Join., 23 (1) (2018), pp. 79-86. |
[26] |
Y. Ogawa, H. Akebono, K. Tanaka, A. Sugeta, Sci. Technol. Weld. Join., 24 (3) (2019), pp. 235-242.
DOI URL |
[27] | S.T. Amancio-Filho, J.F. dos Santos, Method For Joining Metal and Plastic Workpieces European Patent(2012). |
[28] | S.T. Amancio-Filho, P.H.F. de Oliveira, C. Bueno, A. Hoppe, J.F. dos Santos, E. Hage Jr, Proceedings for ANTEC 2010, Orlando World Center Marriott Resort & Convention Center, Orlando, FL, USA (2010). |
[29] |
S.M. Goushegir, J.F. Dos Santos, S.T Amancio-Filho, Mater. Des., 54 (2014), pp. 196-206.
DOI URL |
[30] |
S.M. Goushegir, Weld. World, 60 (6) (2016), pp. 1073-1093.
DOI URL |
[31] |
J.V. Esteves, S.M. Goushegir, J.F. Dos Santos, L.B. Canto, E. Hage Jr, S.T Amancio-Filho, Mater. Des., 66 (2015), pp. 437-445.
DOI URL |
[32] |
N.M. André, S.M. Goushegir, J.F. Dos Santos, L.B. Canto, S.T Amancio-Filho, Compos. Part B Eng., 94 (2016), pp. 197-208.
DOI URL |
[33] |
S.T. Amancio-Filho, C. Bueno, J.F. Dos Santos, N. Huber, E Hage Jr, Mater. Sci. Eng. A, 528 (10-11) (2011), pp. 3841-3848.
DOI URL |
[34] |
K. Chen, B. Chen, S. Zhang, M. Wang, L. Zhang, A. Shan, Mater. Des., 132 (2017), pp. 178-187.
DOI URL |
[35] | X. Zou, M.Y. Jiang, K. Chen, B.X. Chen, K.M. Reddy, S.Y. Zhang, K. Kondoh, M. Wang, X.M. Hua, L.T. Zhang, A.D. Shan, Mater. Des., 195 (2020), Article 108989. |
[36] |
Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao, J. Feng, Compos. Part A, 105 (2018), pp. 235-257.
DOI URL |
[37] |
H.A. Derazkola, F. Khodabakhshi, A. Simchi, Sci. Technol. Weld. Join., 23 (1) (2018), pp. 35-49.
DOI URL |
[38] | S. Ren, Y. Ma, S. Saeki, Y. Iwamoto, N. Ma, Mater. Des., 188 (2020), Article 108442. |
[39] |
F. Lambiase, A. Di Ilio, A. Paoletti, J. Manuf. Process., 57 (2020), pp. 233-243.
DOI URL |
[40] | P. Geng, G. Qin, J. Zhou, Mater. Des., 185 (2020), Article 108244. |
[41] | G. Qin, P. Geng, J. Zhou, Z. Zou, Mater. Des., 172 (2019), Article 107766. |
[42] |
K.N. Salloomi, J. Manuf. Process., 45 (2019), pp. 746-754.
DOI |
[43] |
B. Ahmad, A. Galloway, A. Toumpis, J. Manuf. Process., 34 (2018), pp. 625-636.
DOI URL |
[44] |
X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A, 42 (10) (2011), pp. 3218-3228.
DOI URL |
[45] |
Y. Huang, Y. Xie, X. Meng, Z. Lv, J. Cao, J. Mater. Process. Technol., 252 (2018), pp. 233-241.
DOI URL |
[46] |
J.Y. Cao, M. Wang, L. Kong, Y.H. Yin, L.J. Guo, Int. J. Adv. Manuf. Technol., 89 (5-8) (2017), pp. 2129-2139.
DOI URL |
[47] | T.J. Lienert, W.L. Stellwag Jr, B.B. Grimmett, R.W Warke, Weld. J. N.Y., 82 (1) (2003), p.1 |
[48] |
H. Su, C.S. Wu, M. Bachmann, M. Rethmeier, Mater. Des., 77 (2015), pp. 114-125.
DOI URL |
[49] |
X. Yang, W. Feng, W. Li, Y. Xu, Q. Chu, T. Ma, W. Wang, Sci. Technol. Weld. Join., 23 (8) (2018), pp. 704-714.
DOI URL |
[50] |
R. Xu, H. Feng, L. Zhao, L. Xu, Int. Commun. Heat Mass Transf., 33 (7) (2006), pp. 811-818.
DOI URL |
[51] |
B. Zhang, X. Chen, K. Pan, M. Li, J. Wang, J. Manuf. Process., 37 (2019), pp. 71-81.
DOI |
[52] | A. Das, H.S. Bang, IOP Conf. Ser. Mater. Sci. Eng., 369 (1) (2018), Article 012032. |
[53] |
X. Tan, J. Zhang, J. Shan, S. Yang, J. Ren, Compos. Part B, 70 (2015), pp. 35-43.
DOI URL |
[54] | M. Xu, B. Liu, Y. Zhao, et al., Sci.Technol. Weld. Join., 25 (2020), pp. 391-397. |
[55] | H. Dong, Z. Tang, P. Li, B. Wu, X. Hao, C. Ma, Mater. Des., 201 (2021), Article 109495. |
[56] |
N. Kimiaki, T. Hironobu, X. Bolyu, T. Atsuki, N. Kazuhiro, Weld. Int., 32 (5) (2018), pp. 328-337.
DOI URL |
[57] |
J.W. Choi, Y. Morisada, H. Liu, K. Ushioda, H. Fujii, K. Nagatsuka, K. Nakata, Sci. Technol. Weld. Join., 25 (7) (2020), pp.600-608.
DOI URL |
[58] |
P. Su, A. Gerlich, T.H. North, G.J. Bendzsak, Sci. Technol. Weld. Join., 11 (2) (2006), pp.163-169.
DOI URL |
[59] |
S.U. Khosa, T. Weinberger, N. Enzinger, Weld. World, 54 (5) (2010), pp. R134-R146.
DOI URL |
[60] |
M. Awang, V.H. Mucino, Mater. Manuf. Process., 25 (1-3) (2010), pp. 167-174.
DOI URL |
[61] |
F.C. Liu, K. Nakata, J. Liao, S. Hirota, H. Fukui, Sci. Technol. Weld. Join., 19 (7) (2014), pp. 578-587.
DOI URL |
[62] |
F. Lambiase, V. Grossi, A Paoletti, J. Manuf. Process., 62 (2021), pp. 833-844.
DOI URL |
[1] | Yunwu Ma, Bingxin Yang, Shanqing Hu, He Shan, Peihao Geng, Yongbing Li, Ninshu Ma. Combined strengthening mechanism of solid-state bonding and mechanical interlocking in friction self-piercing riveted AA7075-T6 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2022, 105(0): 109-121. |
[2] | Heguang Liu, Zhe Wang, Yujia Yang, Shaoqing Wu, Chukai Wang, Caiyin You, Na Tian. Thermally conductive MWCNTs/Fe3O4/Ti3C2Tx MXene multi-layer films for broadband electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 130(0): 75-85. |
[3] | A.C. Bouali, N.M. André, M.R. Silva Campos, M. Serdechnova, J.F. dos Santos, S.T. Amancio-Filho, M.L. Zheludkevich. Influence of LDH conversion coatings on the adhesion and corrosion protection of friction spot-joined AA2024-T3/CF-PPS [J]. J. Mater. Sci. Technol., 2021, 67(0): 197-210. |
[4] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[5] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[6] | Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba. Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 50(0): 162-170. |
[7] | Kim Yeongseon, Jin Younghwan, Yoon Giwan, Chung In, Yoon Hana, Yoo Chung-Yul, Hyun Park Sang. Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe [J]. J. Mater. Sci. Technol., 2019, 35(5): 711-718. |
[8] | M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(4): 491-498. |
[9] | Zhe Shen, Minghu Peng, Dongsheng Zhu, Tianxiang Zheng, Yunbo Zhong, Weili Ren, Chuanjun Li, Weidong Xuan, Zhongming Ren. Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification [J]. J. Mater. Sci. Technol., 2019, 35(4): 568-577. |
[10] | Gaoqiang Chen, Qingxian Ma, Shuai Zhang, Jianjun Wu, Gong Zhang, Qingyu Shi. Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions [J]. J. Mater. Sci. Technol., 2018, 34(1): 128-134. |
[11] | Yunqiang Zhao, Chungui Wang, Jizhong Li, Jinhong Tan, Chunlin Dong. Local melting mechanism and its effects on mechanical properties of friction spot welded joint for Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34(1): 185-191. |
[12] | S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang. Effect of Temperature on Material Transfer Behavior at Different Stages of Friction Stir Welded 7075-T6 Aluminum Alloy [J]. J. Mater. Sci. Technol., 2013, 29(10): 955-960. |
[13] | Nannan Song, Yikun Luan, Yunlong Bai, Z.A. Xu, Xiuhong Kang, Dianzhong Li. Numerical Simulation of Solidification of Work Roll in Centrifugal Casting Process [J]. J Mater Sci Technol, 2012, 28(2): 147-154. |
[14] | Guangquan Yue Boming Zhang Fuhong Dai Shanyi Du. Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels [J]. J Mater Sci Technol, 2010, 26(5): 467-471. |
[15] | S.H. Song Y.S. Byun T.W. Ku W.J. Song J. Kim B.S. Kang. Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates [J]. J Mater Sci Technol, 2010, 26(4): 327-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||