J. Mater. Sci. Technol. ›› 2022, Vol. 106: 147-161.DOI: 10.1016/j.jmst.2021.06.066
• Invited Review • Previous Articles Next Articles
Fuxi Penga, Mingfeng Daia, Zhenyu Wanga, Yifan Guoa,*(), Zuowan Zhoua,b,*(
)
Received:
2021-05-20
Revised:
2021-06-23
Accepted:
2021-06-25
Published:
2022-04-20
Online:
2021-09-09
Contact:
Yifan Guo,Zuowan Zhou
About author:
zwzhou@swjtu.edu.cn (Z. Zhou).Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption[J]. J. Mater. Sci. Technol., 2022, 106: 147-161.
Fig. 2. EM wave incidence and loss mechanism. (a) Schematic diagram of EM wave incidence. (b) The Cole-Cole curve of PPy/Graphene Oxide (GO). (c) the first and (d) the second relaxation semicircle for PPy/GO. Reproduced with permission from Refs. [46,54].
Fig. 3. (a) Illustration of the prepared route Co@C/rGO composites. (b-e) TEM images of Co@C composites at different calcination temperatures. (f) The magnetization hysteresis loops of Co@C. Reproduced with permission from Ref. [83].
Fig. 4. Preparation, characterization and performance of NCG. (a) Schematic illustration of the synthesize process for Ni@C/GE composites. (b) Microwave attenuation process in composites. The minimum RL values (c) of composites in 2-18 GHz. Reproduced with permission from Ref. [87].
Fig. 5. Fabrication process, morphology features and tunable performance of Fe3O4/GE composites. (a) The illustration of fabricating Fe3O4 cluster anchored on GE layer. (b-e) TEM images of Fe3O4/GE hybrids that contains different ratio of Fe3O4 clusters, and (f) corresponding reflection loss value. Reproduced with permission from Ref. [94].
Material | Matrix | Filling ratio (wt%) | Thickness (mm) | RL (dB) | *EAB (GHz) | Refs. |
---|---|---|---|---|---|---|
MnO2@Fe/GE | Paraffin | 50 | 1.50 | -17.5 | 4.0 | [ |
Fe/rGO | Paraffin | 50 | 3.26 | -72.8 | 5.9 | [ |
Co/C | Paraffin | 70 | 1.70 | -15.7 | 5.4 | [ |
GE@Ni | Paraffin | 50 | 2.80 | -53.9 | 5.4 | [ |
Co@C/rGO | Paraffin | 15 | 2.50 | -44.1 | 4.0 | [ |
N-rGA/Ni | Paraffin | 10 | 2.10 | -60.8 | 5.1 | [ |
Ni@C/GE | Paraffin | 15 | 2.50 | -45.5 | 5.6 | [ |
Co3O4@rGO | SiO2 | 10 | 1.78 | -52.6 | 4.0 | [ |
Fe3O4 /rGO rGF/EP | Paraffin | 45 | 2.10 | -48.6 | 6.3 | [ |
Fe3O4/N-GE | Wax | 70 | 1.80 | -53.6 | 5.0 | [ |
GE @Fe | Paraffin | 60 | 2.00 | -58.0 | 11.0 | [ |
Co/GE | Paraffin | 50 | 1.30 | -24.3 | 14.4 | [ |
Fe3O4/N-GE | Paraffin | 50 | 3.40 | -65.3 | 4.0 | [ |
Ni/GE foam | Wax | 1 | 2.60 | -29.2 | 5.0 | [ |
rGO@Ni-MoS2 | Wax | 40 | 2.00 | -40.0 | 5.0 | [ |
Fe/N-rGO | Paraffin | 5 | 2.50 | -49.1 | 14.9 | [ |
Co@NC@rGO | Paraffin | 50 | 3.50 | -46.5 | 14.3 | [ |
Table 1. Summary of magnetic metal hybridized GE hybrids for microwave absorptions.
Material | Matrix | Filling ratio (wt%) | Thickness (mm) | RL (dB) | *EAB (GHz) | Refs. |
---|---|---|---|---|---|---|
MnO2@Fe/GE | Paraffin | 50 | 1.50 | -17.5 | 4.0 | [ |
Fe/rGO | Paraffin | 50 | 3.26 | -72.8 | 5.9 | [ |
Co/C | Paraffin | 70 | 1.70 | -15.7 | 5.4 | [ |
GE@Ni | Paraffin | 50 | 2.80 | -53.9 | 5.4 | [ |
Co@C/rGO | Paraffin | 15 | 2.50 | -44.1 | 4.0 | [ |
N-rGA/Ni | Paraffin | 10 | 2.10 | -60.8 | 5.1 | [ |
Ni@C/GE | Paraffin | 15 | 2.50 | -45.5 | 5.6 | [ |
Co3O4@rGO | SiO2 | 10 | 1.78 | -52.6 | 4.0 | [ |
Fe3O4 /rGO rGF/EP | Paraffin | 45 | 2.10 | -48.6 | 6.3 | [ |
Fe3O4/N-GE | Wax | 70 | 1.80 | -53.6 | 5.0 | [ |
GE @Fe | Paraffin | 60 | 2.00 | -58.0 | 11.0 | [ |
Co/GE | Paraffin | 50 | 1.30 | -24.3 | 14.4 | [ |
Fe3O4/N-GE | Paraffin | 50 | 3.40 | -65.3 | 4.0 | [ |
Ni/GE foam | Wax | 1 | 2.60 | -29.2 | 5.0 | [ |
rGO@Ni-MoS2 | Wax | 40 | 2.00 | -40.0 | 5.0 | [ |
Fe/N-rGO | Paraffin | 5 | 2.50 | -49.1 | 14.9 | [ |
Co@NC@rGO | Paraffin | 50 | 3.50 | -46.5 | 14.3 | [ |
Fig. 6. Microstructure and MA performance of CFO/N-rGO aerogels. (a) Schematic illustration of the fabricated route CFO/N-rGO aerogels. SEM (b) and TEM (c) images of CNGA-2. (d) Reflection Loss of CNGA-2 at different thickness in the frequency range of 2-18 GHz. (e) Microwave attention mechanism of CFO/N-rGO aerogels. Reproduced with permission from Ref. [122].
Fig. 7. Schematic representation of arc plasma method. (a) Fabrication of microporous Co nanoparticles. (b) Preparation of GE layers wrapped magnetic nanoparticles. Reproduced with permission from Refs. [125,129].
Material | Matrix | Filling Ratio (wt%) | Thickness (mm) | RL (dB) | EAB (GHz) | Refs. |
---|---|---|---|---|---|---|
FexOy/FeNi3/rGO | Wax | 20 | 2.70 | -40.3 | 4.5 | [ |
Co0.8Fe2.2O4/rGO | Paraffin | 50 | 2.10 | -51.2 | 7.2 | [ |
ZnFe2O4@rGO | Paraffin | 75 | 2.50 | -41.1 | 3.2 | [ |
Ni0.5Co0.5Fe2O4/GE | Paraffin | 50 | 4.00 | -30.9 | 0.6 | [ |
rGO/N-C/FeNi | Paraffin | 8 | 2.55 | -68.8 | 5.4 | [ |
NiFe2O4/N-rGO | Paraffin | 50 | 2.20 | -54.4 | 4.5 | [ |
NrGO/Ni0.5Zn0.5Fe2O4 | Paraffin | 40 | 2.91 | -63.2 | 5.4 | [ |
CoFe2O4@rGO | Paraffin | 20 | 2.10 | -60.4 | 6.5 | [ |
CoχNi100-χ@GE | Paraffin | 40 | 2.10-6.00 | -53.0 | 12.8 | [ |
NiFe@N-GE | Wax | 40 | 2.20 | -46.9 | 4.1 | [ |
CoFe2O4@GE | Paraffin | 45 | 2.00 | -42.0 | 4.6 | [ |
CoNi@GE | Paraffin | 55 | 2.50 | -54.0 | 5.2 | [ |
Table 2. Summary of multiple alloy/GE composites for microwave absorptions.
Material | Matrix | Filling Ratio (wt%) | Thickness (mm) | RL (dB) | EAB (GHz) | Refs. |
---|---|---|---|---|---|---|
FexOy/FeNi3/rGO | Wax | 20 | 2.70 | -40.3 | 4.5 | [ |
Co0.8Fe2.2O4/rGO | Paraffin | 50 | 2.10 | -51.2 | 7.2 | [ |
ZnFe2O4@rGO | Paraffin | 75 | 2.50 | -41.1 | 3.2 | [ |
Ni0.5Co0.5Fe2O4/GE | Paraffin | 50 | 4.00 | -30.9 | 0.6 | [ |
rGO/N-C/FeNi | Paraffin | 8 | 2.55 | -68.8 | 5.4 | [ |
NiFe2O4/N-rGO | Paraffin | 50 | 2.20 | -54.4 | 4.5 | [ |
NrGO/Ni0.5Zn0.5Fe2O4 | Paraffin | 40 | 2.91 | -63.2 | 5.4 | [ |
CoFe2O4@rGO | Paraffin | 20 | 2.10 | -60.4 | 6.5 | [ |
CoχNi100-χ@GE | Paraffin | 40 | 2.10-6.00 | -53.0 | 12.8 | [ |
NiFe@N-GE | Wax | 40 | 2.20 | -46.9 | 4.1 | [ |
CoFe2O4@GE | Paraffin | 45 | 2.00 | -42.0 | 4.6 | [ |
CoNi@GE | Paraffin | 55 | 2.50 | -54.0 | 5.2 | [ |
Fig. 8. Magnetism, structure features and MA performance of PANi/ND/GE composites. (a) Schematic for the fabrication of carbonized polyaniline/nanodiamond/GE hybrids. (b) Hysteresis loop of composites measured at room temperature. (c) HRTEM images of PANi/ND/GE900. (d) Schematic for detailed EM loss mechanism of composites. (e) The RL results of composites at thickness of 1.8 mm. Reproduced with permission from Ref. [38].
Fig. 9. Ferromagnetism of magic-angle twisted bilayer GE. (a) Schematics of the magic-angle TBG as a ferromagnetic topological insulator. (b) Hysteresis loop of the magic-angle TBG. (c) Image of magnetization density. Reproduced with permission from Refs. [140,142,146].
Fig. 11. Porous morphology and loss features of twin hollow GE microspheres. (a) Schematic diagram of hollow GO aerogel spheres. (b) SEM image of the cross-section view of GO aerogel spheres. (c) Schematic illustration of the absorption mechanism of hollow GE aerogel spheres. (d) 3D plots of minimum reflection loss evaluation of GE aerogel spheres (GAS), hollow GE aerogel spheres (HGAS2) and twin hollow GE microspheres (BGAS2). Reproduced with permission from Ref. [154].
Fig. 12. Hierarchical structure and MA performance of CoNi@GE@NCNTs. (a) SEM images of 3D urchin-like CoNi@GENCNTs. (b, c) TEM images of 3D urchin-like CoNi@GE@NCNTs. (d) 3D diagrams of the MW absorption properties of 3D urchin-like CoNi@GE@NCNTs. Reproduced with permission from Ref. [132].
Fig. 13. Construction route and loss ability of Co3O4@rGO hybrids. (a) Fabrication process of Co3O4@rGO hybrids. (b) SEM images of Co3O4@rGO hybrids. (c) 3D evaluation plot of RL versus temperatures and thicknesses. (d) Schematic illustrations for the microwave absorption of samples. (e) The tan δm, tan δe and (f) the Zin values of the Co3O4@rGO sample with increasing temperature. Reproduced with permission from Ref. [88].
Fig. 14. Micromorphology features and loss capability of FeCo nanochians/GO composites. (a, b) TEM and HRTEM images of FeCo nanochians/GO composites. (c) Schematic illustration of microwave attention mechanisms for composites. The reflection loss (d) of S2. Reproduced with permission from Ref. [166].
Material | Filling ratio (wt%) | Thickness (mm) | RL (dB) | Bandwidth (GHz) | Hierarchical structures | Refs. |
---|---|---|---|---|---|---|
CoNi@GE | 55 | 2.50 | -54.0 | 5.2 | Core-shell | [ |
Ti3C2Tx@GE | 10 | 1.20 | -49.1 | 2.9 | Aerogel | [ |
microspheres | ||||||
CNTs/GE | 4 | 1.70 | -31.0 | 8.5 | Aerogel | [ |
Fe3O4@C/GE | / | 0.99 | -54.0 | 6.5 | Aerogel | [ |
HGAS | 5 | 2.30 | -52.7 | 7.0 | Aerogel | [ |
spheres | ||||||
Ni@N-GE | 23 | 2.30 | -58.7 | 5.8 | Foam | [ |
FeCo/PVP/GO | / | 2.00 | -40.9 | 4.9 | Nano Chains | [ |
Table 3. Summary of hierarchical structures of GE-based magnetic hybrids for microwave absorptions.
Material | Filling ratio (wt%) | Thickness (mm) | RL (dB) | Bandwidth (GHz) | Hierarchical structures | Refs. |
---|---|---|---|---|---|---|
CoNi@GE | 55 | 2.50 | -54.0 | 5.2 | Core-shell | [ |
Ti3C2Tx@GE | 10 | 1.20 | -49.1 | 2.9 | Aerogel | [ |
microspheres | ||||||
CNTs/GE | 4 | 1.70 | -31.0 | 8.5 | Aerogel | [ |
Fe3O4@C/GE | / | 0.99 | -54.0 | 6.5 | Aerogel | [ |
HGAS | 5 | 2.30 | -52.7 | 7.0 | Aerogel | [ |
spheres | ||||||
Ni@N-GE | 23 | 2.30 | -58.7 | 5.8 | Foam | [ |
FeCo/PVP/GO | / | 2.00 | -40.9 | 4.9 | Nano Chains | [ |
[1] |
W. Yang, B. Jiang, Z. Liu, R. Li, L. Hou, Z. Li, Y. Duan, X. Yan, F. Yang, Y. Li, J. Mater. Sci. Technol. 70 (2021) 214-223.
DOI URL |
[2] |
G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. A 8 (2020) 24368-24387.
DOI URL |
[3] |
C. Chen, S. Zeng, X. Han, Y. Tan, W. Feng, H. Shen, S. Peng, H. Zhang, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
[4] |
Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
[5] |
L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan, M. Yu, Q. Zhang, Chem. Eng. J. 326 (2017) 945-955.
DOI URL |
[6] |
H. Liang, J. Liu, Y. Zhang, L. Luo, H. Wu, Compos. Part B 178 (2019) 107507.
DOI URL |
[7] |
T. Zhu, S. Chang, Y.-.F. Song, M. Lahoubi, W. Wang, Chem. Eng. J. 373 (2019) 755-766.
DOI URL |
[8] |
H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, G. Ji, Carbon 173 (2021) 501-511.
DOI URL |
[9] |
M. Li, X. Fan, H. Xu, F. Ye, J. Xue, X. Li, L. Cheng, J. Mater. Sci. Technol. 59 (2020) 164-172.
DOI URL |
[10] |
L. Cui, X. Han, F. Wang, H. Zhao, Y. Du, J. Mater. Sci. 56 (2021) 10782-10811.
DOI URL |
[11] |
L. Cui, C. Tian, L. Tang, X. Han, Y. Wang, D. Liu, P. Xu, C. Li, Y. Du, ACS Appl. Mater. Interfaces 11 (2019) 31182-31190.
DOI URL |
[12] |
Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Compos. Part A 135 (2020) 105960.
DOI URL |
[13] |
A. Hazarika, B.K. Deka, K. Kong, D. Kim, Y.W. Nam, J.H. Choi, C.G. Kim, Y.B. Park, H.W. Park, Compos. Part B 140 (2018) 123-132.
DOI URL |
[14] |
J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B.B. Xu, H. Qiu, L. Chen, J. Gu, Compos. Part A 129 (2020) 105714.
DOI URL |
[15] |
J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[16] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[17] | H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu, K. Lin, P. Xu, X. Han, Y. Du, Small 16 (2020) e2003407. |
[18] |
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 7 (2019) 5037-5046.
DOI URL |
[19] |
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, J. Mater. Chem. A 9 (2021) 5086-5096.
DOI URL |
[20] |
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang, D. Liu, H. Zhao, Y. Du, Carbon 174 (2021) 673-682.
DOI URL |
[21] |
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang, L. Cui, P. Xu, Y. Du, Carbon 145 (2019) 701-711.
DOI URL |
[22] | M. Zhang, X. Fang, Y. Zhang, J. Guo, C. Gong, D. Estevez, F. Qin, J. Zhang, Nan-otechnology 31 (2020) 275707. |
[23] |
C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Nano Micro Lett. 10 (2018) 26.
DOI URL |
[24] |
S. Zhao, J. Yang, F. Duan, B. Zhang, Y. Liu, B. Zhang, C. Chen, Y. Qin, J. Colloid Interface Sci. 598 (2021) 45-55.
DOI URL |
[25] |
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B Eng. 137 (2018) 260-277.
DOI URL |
[26] |
Q. Zhang, Z. Du, X. Huang, Z. Zhao, T. Guo, G. Zeng, Y. Yu, Appl. Surf. Sci. 473 (2019) 706-714.
DOI URL |
[27] |
K. Wang, S. Zhang, W. Chu, H. Li, Y. Chen, B. Chen, B. Chen, H. Liu, J. Colloid Interface Sci. 591 (2021) 463-473.
DOI URL |
[28] |
X. Wang, J. Liao, R. Du, G. Wang, N. Tsidaeva, W. Wang, J. Colloid Interface Sci. 590 (2021) 186-198.
DOI URL |
[29] |
N. Zhang, Y. Huang, M. Wang, X. Liu, M. Zong, J. Colloid Interface Sci. 534 (2019) 110-121.
DOI URL |
[30] |
B. Zhao, X. Zhang, J. Deng, Z. Bai, L. Liang, Y. Li, R. Zhang, Phys. Chem. Chem. Phys. 20 (2018) 28623-28633.
DOI URL |
[31] |
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, R. Zhang, Carbon 176 (2021) 411-420.
DOI URL |
[32] |
G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536 (2019) 548-555.
DOI URL |
[33] |
Y. Lin, Y. Liu, J. Dai, L. Wang, H. Yang, J. Alloys Compd. 739 (2018) 202-210.
DOI URL |
[34] |
Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C. Xiong, L. Dong, ACS Appl. Mater. Interfaces 10 (2018) 13860-13868.
DOI URL |
[35] |
X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Chem. Eng. J. 396 (2020) 125205.
DOI URL |
[36] |
F.Ebrahimi Tazangi, S.H. Hekmatara, J.Seyed Yazdi, J. Alloy. Compd. 854 (2021) 157213.
DOI URL |
[37] |
K.Y. Chen, S. Gupta, N.H. Tai, Compos. Commun. 23 (2021) 100572.
DOI URL |
[38] |
X. Chen, H. Xu, Y. Zhang, L. Tao, L. Yuan, F. Meng, R. Huang, P. Wang, Z. Zhou, Nanotechnology 31 (2020) 415701.
DOI URL |
[39] |
S. Song, A. Zhang, L. Chen, Q. Jia, C. Zhou, J. Liu, X. Wang, Carbon 176 (2021) 279-289.
DOI URL |
[40] |
R. Tan, J. Zhou, Z. Yao, B. Wei, J. Zu, H. Lin, Z. Li, J. Alloy. Compd. 857 (2021) 157568.
DOI URL |
[41] |
B. Wang, Q. Wu, Y. Fu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
[42] |
F. Meng, H. Wang, Wei, Z. Chen, T. Li, C. Li, Y. Xuan, Z. Zhou, Nano Res. 11 (2018) 2847-2861.
DOI URL |
[43] |
F. Peng, F. Meng, Y. Guo, H. Wang, F. Huang, Z. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 16744-16753.
DOI URL |
[44] |
Y. Yao, S. Jin, J. Sun, L. Li, H. Zou, P. Wen, G. Lv, X. Lv, Q. Shu, J. Alloys Compd. 862 (2021) 158005.
DOI URL |
[45] |
Jean Michel Thomassin X. Lou C. Pagnoulle A. Saib L. Bednarz I. Huynen R. Jérôme C. Detrembleur J. Phys. Chem. C 111 (2007) 11186-11192.
DOI URL |
[46] |
G. Han, Z. Ma, B. Zhou, C. He, B. Wang, Y. Feng, J. Ma, L. Sun, C. Liu, J. Colloid Interface Sci. 583 (2021) 571-578.
DOI URL |
[47] |
C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Carbon 140 (2018) 696-733.
DOI URL |
[48] |
M.S. Eric Michielssen, S. Ranjithan, Raj Mittra, J. Appl. Phys. 41 (1993) 1024-1031.
DOI URL |
[49] |
Y. Zhao, W. Wang, J. Wang, J. Zhai, X. Lei, W. Zhao, J. Li, H. Yang, J. Tian, J. Yan, Carbon 173 (2021) 1059-1072.
DOI URL |
[50] |
S.B.J. S.S.Kim, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Chum, IEEE Trans. Magn. 27 (1991) 5462-5464.
DOI URL |
[51] |
H. Wang, H. Ma, Mater. Res. Bull. 122 (2020) 110692.
DOI URL |
[52] |
P. Gao, Y.J. Chen, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang, J. Appl. Phys. 106 (2009) 054303.
DOI URL |
[53] |
R.H. Cole, K.S. Cole, J. Chem. Phys. 9 (1941) 341.
DOI URL |
[54] |
X. Chen, J. Chen, F. Meng, L. Shan, M. Jiang, X. Xu, J. Lu, Y. Wang, Z. Zhou, Compos. Sci. Technol. 127 (2016) 71-78.
DOI URL |
[55] |
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces 4 (2012) 6949-6956.
DOI URL |
[56] |
R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. Shi, J. He, Chem. Eng. J. 337 (2018) 242-255.
DOI URL |
[57] |
B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, ACS Appl. Mater. Interfaces 8 (2016) 3730-3735.
DOI URL |
[58] |
M.Z. Yupeng Shi, X.F. Zhang, L. Zhang, Y.H. Zhang, Z.Y. Jiang, H.X. Si, C.H. Gong, J. Appl. Phys. 126 (2019) 105109.
DOI URL |
[59] |
Z. Yu, N. Zhang, Z. Yao, X. Han, Z. Jiang, J. Mater. Chem. A 1 (2013) 12462.
DOI URL |
[60] |
X. Qi, Y. Yang, W. Zhong, C. Qin, Y. Deng, C. Au, Y. Du, Carbon 48 (2010) 3512-3522.
DOI URL |
[61] |
S. Liu, M. Zhang, X. Lv, Y. Wei, Y. Shi, J. Zhang, L. Zhang, C. Gong, Appl. Phys. Lett. 113 (2018) 083905.
DOI URL |
[62] |
G.J. Hualiang Lv, XiaoHui Liang, Haiqian Zhang, Youwei Du, J. Mater. Chem. C 3 (2015) 5056-5064.
DOI URL |
[63] |
D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong, J. Wang, Carbon 146 (2019) 301-312.
DOI URL |
[64] |
Y. Wu, W. Pan, Y. Li, B. Yang, B. Meng, R. Li, R. Yu, ACS Appl. Nano Mater. 2 (2019) 4367-4376.
DOI URL |
[65] |
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, ACS Appl. Mater. Interfaces 8 (2016) 7370-7380.
DOI URL |
[66] |
J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, J. Mater. Chem. C 6 (2018) 7128-7140.
DOI URL |
[67] |
B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, K.J. Chen, Crys. Growth Des. 19 (2019) 1518-1524.
DOI URL |
[68] |
Q. Yu, Y. Wang, P. Chen, H. Chen, W. Nie, Y. Liu, J. Mater. Sci. Mater. Electron. 30 (2019) 14480-14489.
DOI URL |
[69] |
S.L. Wen, Y. Liu, X. Zhao, Adv. Powder Technol. 26 (2015) 1520-1528.
DOI URL |
[70] |
H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, ACS Appl. Mater. Interfaces 7 (2015) 9776-9783.
DOI URL |
[71] |
X.L. Dong, X.F. Zhang, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, Appl. Phys. Lett. 89 (2006) 053115.
DOI URL |
[72] |
M. Itoh, J.R. Liu, M. Terada, T. Horikawa, K. Machida, Appl. Phys. Lett. 91 (2007) 093101.
DOI URL |
[73] |
X. Wang, G. Shi, F.N. Shi, G. Xu, Y. Qi, D. Li, Z. Zhang, Y. Zhang, H. You, RSC Adv. 6 (2016) 40844-40853.
DOI URL |
[74] |
L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Compos. Part B Eng. 166 (2019) 464-471.
DOI URL |
[75] |
Y. Zhang, S. Gao, H. Xing, H. Li, J. Alloy. Compd. 801 (2019) 609-618.
DOI URL |
[76] |
L. Huang, C. Chen, X. Huang, S. Ruan, Y.J. Zeng, Compos. Part B Eng. 164 (2019) 583-589.
DOI URL |
[77] |
H.G. Shi, T. Wang, J.B. Cheng, H.B. Zhao, S.L. Li, Y.Z. Wang, J. Alloys Compd. 863 (2021) 158090.
DOI URL |
[78] |
G. Gou, F. Meng, H. Wang, M. Jiang, W. Wei, Z. Zhou, Nano Res. 12 (2019) 1423-1429.
DOI URL |
[79] |
H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 11801-11810.
DOI URL |
[80] |
Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao, T. Cong, X. Zuo, Z. fan, S. Yang, L. Pan, Carbon 171 (2021) 395-408.
DOI URL |
[81] |
Y. Liu, Z. Chen, W. Xie, S. Song, Y. Zhang, L. Dong, ACS Sustain. Chem. Eng. 7 (2019) 5318-5328.
DOI URL |
[82] |
J. Xie, H. Jiang, J. Li, F. Huang, A. Zaman, X. Chen, D. Gao, Y. Guo, D. Hui, Z. Zhou, Nanotechnol. Rev. 10 (2021) 1-9.
DOI URL |
[83] |
D.W. He, C. Fu, Y.S. Wang, X. Zhao, Synth. Met. 257 (2019) 116187.
DOI URL |
[84] |
X. Wang, P. Zhou, G. Qiu, X. Zhang, L. Wang, Q. Zhang, M. Wang, Z. Liu, J. Alloy. Compd. 842 (2020) 155807.
DOI URL |
[85] |
J. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S. Feng, H. Yue, Carbon 152 (2019) 575-586.
DOI URL |
[86] |
L. Yu, G. Wan, Y. Qin, G. Wang, Electrochim. Acta 268 (2018) 283-294.
DOI URL |
[87] |
X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Chem. Eng. J. 382 (2020) 122980.
DOI URL |
[88] |
J. Ma, J. Shu, W. Cao, M. Zhang, X. Wang, J. Yuan, M. Cao, Compos. Part B Eng. 166 (2019) 187-195.
DOI URL |
[89] |
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, ACS Sustain. Chem. Eng. 6 (2018) 12471-12480.
DOI URL |
[90] |
C. Liang, P. Song, A. Ma, X. Shi, H. Gu, L. Wang, H. Qiu, J. Kong, J. Gu, Compos. Sci. Technol. 181 (2019) 107683.
DOI URL |
[91] |
S. Bandaru, N. Murthy, R. Kulkarni, N.J. English, J. Mater. Sci. Technol. 86 (2021) 127-138.
DOI URL |
[92] |
P. Wang, J. Zhang, G. Wang, B. Duan, D. He, T. Wang, F. Li, J. Mater. Sci. Technol. 35 (2019) 1931-1939.
DOI |
[93] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[94] |
X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Chem. Eng. J. 332 (2018) 321-330.
DOI URL |
[95] |
M.S. Cao. Bo Wen, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon, 65 (2013) 124-139.
DOI URL |
[96] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[97] | D. Zhang, Y. Deng, C. Han, H. Zhu, C. Yan, H. Zhang, Nanomaterials 10 (2020). |
[98] |
F. Yan, Y. Zong, C. Zhao, G. Tan, Y. Sun, X. Li, Z. Ren, X. Zheng, J. Alloy. Compd. 742 (2018) 928-936.
DOI URL |
[99] |
Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Carbon 115 (2017) 493-502.
DOI URL |
[100] |
L. Xiong, M. Yu, J. Liu, S. Li, B. Xue, RSC Adv. 7 (2017) 14733-14741.
DOI URL |
[101] |
W. Uddin, S.U. Rehman, M.A. Aslam, S.U. Rehman, M. Wu, M. Zhu, Mater. Res. Bull. 130 (2020) 110943.
DOI URL |
[102] |
K. Wang, Y. Chen, H. Li, B. Chen, K. Zeng, Y. Chen, H. Chen, Q. Liu, H. Liu, ACS Appl. Nano Mater. 2 (2019) 8063-8074.
DOI URL |
[103] | L. Liu, L. Wang, Q. Li, X. Yu, X. Shi, J. Ding, W. You, L. Yang, Y. Zhang, R. Che, Chem. Nano Mater. 5 (2019) 558-565. |
[104] |
N. Sun, W. Li, S. Wei, H. Gao, W. Wang, S. Chen, J. Mater. Sci. Technol. 91 (2021) 187-199.
DOI URL |
[105] |
W. Shen, B. Ren, K. Cai, Y.F. Song, W. Wang, J. Alloy. Compd. 774 (2019) 997-1008.
DOI |
[106] |
G.Y. Zhang, R.W. Shu, J.B. Zhang, X. Wang, M. Wang, Y. Gan, J.J. Shi, J. He, Mater. Lett. 215 (2018) 229-232.
DOI URL |
[107] |
Y. Zhang, X. Wang, M. Cao, Nano Res. 11 (2018) 1426-1436.
DOI URL |
[108] |
J.R. Lomeda, C.E. Hamilton, Z.Z. Sun, J.M. Tour, A.R. Barron, Nano Lett. 9 (2009) 3460-3462.
DOI URL |
[109] |
P. Yin, Y. Deng, L. Zhang, W. Wu, J. Wang, X. Feng, X. Sun, H. Li, Y. Tao, Ceram. Int. 44 (2018) 20896-20905.
DOI URL |
[110] |
A. B. Bourlinos, T.A. Steriotis, M. Karakassides, Y. Sanakis, V. Tzitzios, C. Trapalis, E. Kouvelos, A. Stubos, Carbon 45 (2007) 852-857.
DOI URL |
[111] |
C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, H. Gu, J. Kong, D. Cao, J. Gu, Nanoscale 11 (2019) 22590-22598.
DOI URL |
[112] | P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang, J. Zhang, J. Kong, J. Gu, Sustain. Mater. Technol. 24 (2020) e00153. |
[113] |
Y. Shi, X. Gao, J. Qiu, Ceram. Int. 45 (2019) 3126-3132.
DOI URL |
[114] |
H. Zhang, C. Shi, Z. Jia, X. Liu, B. Xu, D. Zhang, G. Wu, J. Colloid Interface Sci. 584 (2021) 382-394.
DOI URL |
[115] |
J. Che, L. Shen, Y. Xiao, J. Mater. Chem. 20 (2010) 1722.
DOI URL |
[116] |
Y. Li, W. Wei, Y. Wang, N. Kadhim, Y. Mei, Z. Zhou, J. Mater. Chem. C 7 (2019) 11783-11789.
DOI URL |
[117] |
J. Islam, G. Chilkoor, K. Jawaharraj, S.S. Dhiman, R. Sani, V. Gadhamshetty, Bioresour. Technol. 300 (2020) 122642.
DOI URL |
[118] |
S. Sravya, D. RamaDevi, N. Belachew, K.E. Rao, K. Basavaiah, RSC Adv. 11 (2021) 12030-12035.
DOI URL |
[119] |
R. Shu, C. Zhao, J. Zhang, W. Liu, X. Cao, Y. Li, S. Liu, J. Colloid Interface Sci. 585 (2021) 538-548.
DOI URL |
[120] |
X. Gao, Y. Wang, Q. Wang, X. Wu, W. Zhang, C. Luo, J. Magn. Magn. Mater. 486 (2019) 165251.
DOI URL |
[121] |
R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi, Y. Liu, M. Zheng, Chem. Eng. J. 384 (2020) 123266.
DOI URL |
[122] |
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, Chem. Eng. J. 388 (2020) 124317.
DOI URL |
[123] |
M. Zhang, Z. Jiang, H. Si, X. Zhang, C. Liu, C. Gong, Y. Zhang, J. Zhang, Phys. Chem. Chem. Phys. 22 (2020) 8639-8646.
DOI URL |
[124] |
C. Journet, P. Bernier, Appl. Phys. A 67 (1998) 1-9.
DOI URL |
[125] |
H. Liao, D. Li, C. Zhou, T. Liu, J. Alloy. Compd. 782 (2019) 556-565.
DOI URL |
[126] |
Z.Y. Zhiwei Peng, Z.Z. Sun, J.M. Tour, ACS Nano 5 (2011) 8241-8247.
DOI PMID |
[127] |
Y. Li, J. Wang, R. Liu, X. Zhao, X. Wang, X. Zhang, G. Qin, J. Alloys Compd. 724 (2017) 1023-1029.
DOI URL |
[128] |
L. Tan, M. Zeng, T. Zhang, L. Fu, Nanoscale 7 (2015) 9105-9121.
DOI URL |
[129] |
H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, Nanoscale 7 (2015) 17312-17319.
DOI PMID |
[130] |
X. Qu, Y. Zhou, X. Li, M. Javid, F. Huang, X. Zhang, X. Dong, Z. Zhang, Inorg. Chem. Front. 7 (2020) 1148-1160.
DOI URL |
[131] |
S. Wang, Y. Zhao, H. Xue, J. Xie, C. Feng, H. Li, D. Shi, S. Muhammad, Q. Jiao, Mater. Lett. 223 (2018) 186-189.
DOI URL |
[132] |
D. Guo, H. Yuan, X. Wang, C. Zhu, Y. Chen, ACS Appl. Mater. Interfaces 12 (2020) 9628-9636.
DOI URL |
[133] |
A. P. Alegaonkar, A. S. Kibey, P.S. Alegaonkar, A. Kshirsagar, S.K. Pardeshi, Mater. Chem. Phys. 222 (2019) 132-138.
DOI |
[134] |
O.V. Yazyev, L. Helm, Phys. Rev. B 75 (2007) 125408.
DOI URL |
[135] |
R. Singh, P. Kroll, J. Phys. Condes. Matter 21 (2009) 196002.
DOI URL |
[136] |
Z. Wang, S. Qin, C. Wang, Eur. Phys. J. B 87 (2014) 88.
DOI URL |
[137] |
Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu, Y. Du, Sci. Rep. 3 (2013) 2566.
DOI URL |
[138] |
L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Carbon 125 (2017) 630-639.
DOI URL |
[139] |
E.Z. Liu, M. Wu, J.Z. Jiang, Appl. Phys. Lett. 93 (2008) 082504.
DOI URL |
[140] |
E.J. Fox, A.L. Sharpe, A.W. Barnard, J. Finney, K. Watanabe, M.A. Kastner, T. Taniguchi, D. Goldhaber-Gordon, Science 365 (2019) 605-608.
DOI PMID |
[141] |
S.Y. Li, Y. Zhang, Y.N. Ren, J. Liu, X. Dai, L. He, Phys. Rev. B 102 (2020) 121406.
DOI URL |
[142] |
M. Serlin, C.L. Tschirhart, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, K. Watanabe, Y. Zhang, T. Taniguchi, M.E. Huber, A.F. Young, Science 372 (2021) 1323-1327.
DOI URL |
[143] |
C.L. Tschirhart, M. Serlin, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, A.F.Y.L. Balents, Science 367 (2020) 900-903.
DOI PMID |
[144] |
Y.H. Zhang, D. Mao, T. Senthil, Phys. Rev. Res. 1 (2019) 033126.
DOI URL |
[145] |
N. Bultinck, S. Chatterjee, M.P. Zaletel, Phys. Rev. Lett. 124 (2020) 166601.
DOI URL |
[146] |
J.H. Pixley, E.Y. Andrei, Science 365 (2019) 543-543.
DOI |
[147] |
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo, Y. Wang, F. Peng, F. Huang, Z. Zhou, Chem. Eng. J. 391 (2020) 123512.
DOI URL |
[148] |
P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma, Z. Wang, S. Liu, C. Gao, Adv. Funct. Mater. 30 (2020) 2006584.
DOI URL |
[149] | Y. Zhou, X. Zhang, Y. Ding, L. Zhang, G. Yu, Adv. Mater. 32 (2020) e2005763. |
[150] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175 (2021) 271-280.
DOI URL |
[151] |
H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo, B. Zhao, R. Zhang, Compos. Part B Eng. 196 (2020) 108122.
DOI URL |
[152] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano Micro Lett. 13 (2021) 91.
DOI URL |
[153] |
J. Ma, W. Li, Y. Fan, J. Yang, Q. Yang, J. Wang, W. Luo, W. Zhou, N. Nomura, L. Wang, W. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 46386-46396.
DOI URL |
[154] |
T. Li, D. Zhi, Y. Chen, B. Li, Z. Zhou, F. Meng, Nano Res. 13 (2020) 477-484.
DOI URL |
[155] |
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, R.S. Ruoff, ACS Nano 12 (2018) 5816-5825.
DOI URL |
[156] |
D.W. Xu, S. Yang, P. Chen, Q. Yu, X.H. Xiong, J. Wang, J. Alloy. Compd. 782 (2019) 600-610.
DOI URL |
[157] |
J. Li, S. Bi, B. Mei, F. Shi, W. Cheng, X. Su, G. Hou, J. Wang, J. Alloys Compd. 717 (2017) 205-213.
DOI URL |
[158] |
Y.F. Xu, J.J. Liang, D. Sui, L. Zhang, Y. Huang, Y.F. Ma, F.F. Li, Y.S. Chen, J. Phys. Chem. C 114 (2010) 17465-17471.
DOI URL |
[159] |
Y. Wang, Y. Mei, F. Huang, X. Yang, Y. Li, J. Li, F. Meng, Z. Zhou, Carbon 147 (2019) 490-500.
DOI URL |
[160] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A Appl. Sci. Manuf. 128 (2020) 105670.
DOI URL |
[161] |
F. Wang, P. Xu, N. Shi, L. Cui, Y. Wang, D. Liu, H. Zhao, X. Han, Y. Du, J. Mater. Sci. Technol. 93 (2021) 7-16.
DOI URL |
[162] |
J. Luo, Y. Hu, L. Xiao, G. Zhang, H. Guo, G. Hao, W. Jiang, Nanotechnology 31 (2019) 085708.
DOI URL |
[163] |
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong, G. Qin, ACS Appl. Mater. Interfaces 8 (2016) 3494-3498.
DOI URL |
[164] |
M. Qiao, J. Li, D. Wei, X. He, X. Lei, J. Wei, Q. Zhang, Microporous Mesoporous Mater. 314 (2021) 110867.
DOI URL |
[165] |
W. You, K. Pei, L. Yang, X. Li, X. Shi, X. Yu, H. Guo, R. Che, Nano Res. 13 (2019) 72-78.
DOI URL |
[166] | E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu, J. Xiong, X. Li, W. Lu, Adv. Eng. Mater. 23 (2020) 2000827. |
[1] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[2] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[3] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[4] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[5] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[6] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[7] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[8] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[9] | Huifang Pang, Yuping Duan, Xuhao Dai, Lingxi Huang, Xuan Yang, Tuo Zhang, Xiaoji Liu. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 203-214. |
[10] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
[11] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[12] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
[13] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
[14] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[15] | Peng Wang, Junming Zhang, Guowu Wang, Benfang Duan, Donglin He, Tao Wang, Fashen Li. Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences [J]. J. Mater. Sci. Technol., 2019, 35(9): 1931-1939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||