J. Mater. Sci. Technol. ›› 2022, Vol. 103: 186-196.DOI: 10.1016/j.jmst.2021.07.009
• Research Article • Previous Articles Next Articles
Gang Zhoua, Yan Yanga,b,c,*(
), Hanzhu Zhanga, Faping Hua, Xueping Zhanga, Chen Wend, Weidong Xiea, Bin Jianga,c, Xiaodong Penga,b,**(
), Fusheng Pana
Received:2021-01-25
Revised:2021-07-01
Accepted:2021-07-01
Published:2021-08-28
Online:2021-08-28
Contact:
Yan Yang,Xiaodong Peng
About author:** E-mail addresses: pxd@cqu.edu.cn (X. Peng).Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength[J]. J. Mater. Sci. Technol., 2022, 103: 186-196.
| Alloy | Li | Al | Sn | Mg |
|---|---|---|---|---|
| Mg-7Li-2Al-1.5Sn | 7.17±0.21 | 1.96±0.02 | 1.38±0.01 | Bal. |
Table 1. Chemical compositions of Mg-7Li-2Al-1.5Sn alloy (wt.%).
| Alloy | Li | Al | Sn | Mg |
|---|---|---|---|---|
| Mg-7Li-2Al-1.5Sn | 7.17±0.21 | 1.96±0.02 | 1.38±0.01 | Bal. |
Fig. 2. Optical microstructure of Mg-7Li-2Al-1.5Sn alloys, (a) as-cast alloy; (b) as-extruded alloy (vertical to ED); (c) and (d) as-extruded alloy (parallel to ED); (e) grain size distribution of the DRXed grains.
Fig. 5. SEM morphologies (a, b) and EDS results (c-h) for precipitates of the Mg-7Li-2Al-1.5Sn alloy: (a) as-cast, (b) as-extruded, (c-e) points A-C of as-cast alloy, (f-h) points D-F of as-extruded alloy.
Fig. 6. (a) TEM morphology showing the second phase after homogenization at 250 °C for 4 h (before extrusion); (b) Precipitate morphology after extrusion; (c) TEM image of the DRXed grains; (d) TEM image of the un-DRXed region.
Fig. 7. Microstructures of the Mg-7Li-2Al-1.5Sn alloy: (a) HAADF-STEM image of the as-cast alloy after homogenization at 250 °C for 4 h; (e) HAADF-STEM of α-Mg grains in the as-extruded alloy; (i) HAADF-STEM of β-Li grains in the extruded alloy, and elemental mappings of related areas: (b), (f) and (j) Mg; (c), (g) and (k) Al; (d), (h) and (l) Sn.
Fig. 9. Dislocation analysis in as-extruded alloy under two-beam diffraction conditions near $ [11\bar{2}0] $. (a) two-beam bright-field (TBBF) image of un-DRXed grain under g = (0001); (b) TBBF image of un-DRXed grain under g = $ (0\bar{1}11) $; (c) TBBF image of DRXed grain under g = (0001); (d) TBBF image of DRXed grain under g = $ (0\bar{1}11) $.
| State | Yield strength (MPa) | Ultimate tensilestrength (MPa) | Elongation (%) |
|---|---|---|---|
| As-cast | 126±7 | 164±9 | 5.4 ± 2.1 |
| As-extruded | 250±10 | 324±2 | 11.9 ± 0.4 |
Table 2. Mechanical properties of Mg-7Li-2Al-1.5Sn test alloys at room temperature.
| State | Yield strength (MPa) | Ultimate tensilestrength (MPa) | Elongation (%) |
|---|---|---|---|
| As-cast | 126±7 | 164±9 | 5.4 ± 2.1 |
| As-extruded | 250±10 | 324±2 | 11.9 ± 0.4 |
Fig. 13. Plot of tensile strength and elongation of the reported extruded dual-phase Mg-Li alloys [13], [15], [16], [17], [23], [29], [32], [40], [41], [42], [43], [44].
| Symbol | Meaning | Value | Unit |
|---|---|---|---|
| R | the average radius of pining particles | 14 | nm |
| Φ | the volume fraction of the pining particles | 0.0018 | |
| K | material-related constants | 245 [ | μm-1/2 |
| d | the average grain size | 2 | μm |
| G | the shear modulus of α-Mg | 17 [ | GPa |
| b | the value of Burgers vector | 0.32 [ | nm |
| λp | the effective inter-particle spacing | 227 | nm |
| v | the Poisson ratio | 0.3 | |
| dp | the average size of particles | 14 | nm |
| r0 | the core radius of the dislocation equivalent to b | 0.32 [ | nm |
| M | the Taylor factor | 4.2 [ | |
| α | constant | 0.2 | |
| ρ | the dislocation density estimated form the alloy | ∼6.0 × 1013 | m - 2 |
Table 3. The meaning and value of parameters used in the strengthening mechanism calculations.
| Symbol | Meaning | Value | Unit |
|---|---|---|---|
| R | the average radius of pining particles | 14 | nm |
| Φ | the volume fraction of the pining particles | 0.0018 | |
| K | material-related constants | 245 [ | μm-1/2 |
| d | the average grain size | 2 | μm |
| G | the shear modulus of α-Mg | 17 [ | GPa |
| b | the value of Burgers vector | 0.32 [ | nm |
| λp | the effective inter-particle spacing | 227 | nm |
| v | the Poisson ratio | 0.3 | |
| dp | the average size of particles | 14 | nm |
| r0 | the core radius of the dislocation equivalent to b | 0.32 [ | nm |
| M | the Taylor factor | 4.2 [ | |
| α | constant | 0.2 | |
| ρ | the dislocation density estimated form the alloy | ∼6.0 × 1013 | m - 2 |
| Alloy | Grain boundary strengthening (MPa) | Precipitation strengthening (MPa) | Dislocation strengthening (MPa) |
|---|---|---|---|
| Mg-7Li-2Al-1.5Sn | ∼173 | ∼73 | ∼35 |
Table 4. The strengthening contributions of as-extruded Mg-7Li-2Al-1.5Sn alloy from different strengthening mechanisms.
| Alloy | Grain boundary strengthening (MPa) | Precipitation strengthening (MPa) | Dislocation strengthening (MPa) |
|---|---|---|---|
| Mg-7Li-2Al-1.5Sn | ∼173 | ∼73 | ∼35 |
| [1] | W. Liu, X. Liu, C. Tang, W. Yao, Y. Xiao, X. Liu, J. Magnes. Alloys. 6 (2018) 77-82. |
| [2] |
Y. Sun, R. Wang, C. Peng, Y. Feng, Sci. Eng. A. 733 (2018) 429-439.
DOI URL |
| [3] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scripta Mater. 193 (2021) 127-131.
DOI URL |
| [4] | M. Hao, W. Cheng, L. Wang, E. Mostaed, L. Bian, H. Wang, X. Niu, J. Magnes. Alloys. 8 (2020) 899-909. |
| [5] | X. Li, L. Ren, Q. Le, P. Jin, C. Cheng, T. Wang, P. Wang, X. Zhou, X. Chen, D. Li, J. Alloys. Compd. 831 (2020) 154 86 8. |
| [6] |
S. Zhang, Y. Sun, R. Wu, X. Wang, X. Chen, C. Fernandez, Q. Peng, J. Mater. Sci. Technol. 51 (2020) 79-83.
DOI |
| [7] |
Y. Zeng, B. Jiang, Q.R. Yang, G.F. Quan, J.J. He, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 700 (2017) 59-65.
DOI URL |
| [8] | Q. Wu, H. Yan, J. Chen, W. Xia, M. Song, B. Su, T. Ding, Microsc Microanal, 26 (2020) 886-894. |
| [9] | R. Islam, M. Haghshenas, J. Magnes. Alloys. 7 (2019) 203-217. |
| [10] |
H. Dong, S. Xu, L. Wang, S. Kamado, L. Wang, Metall. Mater. Trans. A 43 (2012) 709-715.
DOI URL |
| [11] |
Y. Tang, Q. Le, W. Jia, L. Fu, X. Liu, J. Cui, Mater. Sci. Eng. A 704 (2017) 344-359.
DOI URL |
| [12] | F. Zhong, H. Wu, Y. Jiao, R. Wu, J. Zhang, L. Hou, M. Zhang, J. Mater. Sci. Tech-nol. 39 (2020) 124-134. |
| [13] |
X. Fu, Y. Yang, J. Hu, J. Su, X. Zhang, X. Peng, Sci. Eng. A. 709 (2018) 247-253.
DOI URL |
| [14] |
Y. Kim, H. Son, Trans. Nonferrous Met. Soc. China 26 (2016) 697-703.
DOI URL |
| [15] |
B.S. Pugazhendhi, A. Kar, K. Sinnaeruvadi, S. Suwas, Arch. Civ. Mech. Eng. 18 (2018) 1332-1344.
DOI URL |
| [16] |
X. Meng, R. Wu, M. Zhang, L. Wu, C. Cui, J. Alloys. Compd 486 (2009) 722-725.
DOI URL |
| [17] |
Y. Kim, J. Kim, H. Yu, J. Choi, H. Son, J. Alloys. Compd. 583 (2014) 15-20.
DOI URL |
| [18] | J. Medina, G. Garces, P. Perez, A. Stark, N. Schell, P. Adeva, J. Magnes. Alloys 8 (2020) 1047-1060. |
| [19] |
G. Nayyeri, R. Mahmudi, F. Salehi, Mater. Sci. Eng. A 527 (2010) 5353-5359.
DOI URL |
| [20] |
J. Wang, J. Han, I. Jung, D. Bairos, P. Chartrand, CALPHAD 47 (2014) 100-113.
DOI URL |
| [21] |
D. Chen, Y. Ren, Y. Guo, W. Pei, H. Zhao, G. Qin, Trans. Nonferrous Met. Soc. China 20 (2010) 1321-1325.
DOI URL |
| [22] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [23] |
X. Chen, Y. Zhang, M. Cong, Y. Lu, X. Li, Trans. Nonferrous Met. Soc. China 30 (2020) 2079-2089.
DOI URL |
| [24] |
B. Jiang, Y. Zeng, M. Zhang, H. Yin, Q. Yang, F. Pan, Trans. Nonferrous Met. Soc. China 23 (2013) 904-908.
DOI URL |
| [25] |
Y. Yang, X. Xiong, J. Su, X. Peng, H. Wen, G. Wei, F. Pan, E.J. Lavernia, J. Alloys. Compd. 750 (2018) 696-705.
DOI URL |
| [26] |
Z. Hu, Z. Yin, Z. Yin, B. Tang, X. Huang, H. Yan, H. Song, C. Luo, X. Chen, J. Alloys. Compd. 842 (2020) 155836.
DOI URL |
| [27] |
V.C. Olalla, V. Bliznuk, N. Sanchez, R. Thibaux, L.A.I. Kestens, R.H. Petrov, Mater. Sci. Eng. A 604 (2014) 46-56.
DOI URL |
| [28] |
J. Wang, J. Han, I. Jung, D. Bairos, P. Chartrand, Calphad. 47 (2014) 100-113.
DOI URL |
| [29] |
H. Ji, G. Wu, W. Liu, X. Liang, G. Liao, D. Ding, Charact. 159 (2020) 110008.
DOI URL |
| [30] |
G. Wei, X. Peng, A. Hadadzadeh, Y. Mahmoodkhani, W. Xie, Y. Yang, M.A. Wells, Mech. Mater. 89 (2015) 241-253.
DOI URL |
| [31] | K.Reza Kashyzadeh, M. Pahlavani, J. Marzbanrad, Mater. Today. Proc. (2020) (accepted). |
| [32] |
X. Xiong, Y. Yang, H. Deng, M. Li, J. Li, G. Wei, X. Peng, Metals. 9 (2019) 1212.
DOI URL |
| [33] |
H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J. Nie, Acta Mater 149 (2018) 350-363.
DOI URL |
| [34] |
Y. Zeng, B. Jiang, R. Li, H. Yin, S. Al-Ezzi, Metals (Basel) 7 (2017) 172.
DOI URL |
| [35] |
K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scripta Mater 63 (2010) 725-730.
DOI URL |
| [36] |
Z. Yang, J.P. Li, J.X. Zhang, Y.C. Guo, B.W. Wang, F. Xia, M.X. Liang, Mater. Sci. Eng. A 515 (2009) 102-107.
DOI URL |
| [37] |
Y. Yang, X. Peng, H. Wen, B. Zheng, Y. Zhou, W. Xie, E.J. Lavernia, Metall. Mater. Trans. A 44 (2013) 1101-1113.
DOI URL |
| [38] |
J.F. DEVLIN, J. Phys. F. Met. Phys. 11 (1981) 2497-2513.
DOI URL |
| [39] |
L. Wang, F. Liu, J.J. Cheng, Q. Zuo, C.F. Chen, J. Alloys. Compd. 623 (2015) 69-78.
DOI URL |
| [40] | J. Guo, L.L. Chang, Y.R. Zhao, Y.P. Jin, Mater. Charcat. 148 (2019) 35-42. |
| [41] |
T. Xu, X. Shen, B. Li, X. Peng, Q. Liu, G. Wei, G. Liu, Z. Ma, Mater. Res. Express. 6 (2019) 076548.
DOI URL |
| [42] |
D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Scripta Mater 57 (2007) 285-288.
DOI URL |
| [43] |
Y. Zhang, J. Zhang, G. Wu, W. Liu, L. Zhang, W. Ding, Mater. Des. 66 (2015) 162-168.
DOI URL |
| [44] |
Y. Tang, Q. Le, R.D.K. Misra, G. Su, J. Cui, Mater. Sci. Eng. A 712 (2018) 266-280.
DOI URL |
| [45] |
Y. Jiang, Y. Chen, J. Gao, Mater. Des. 105 (2016) 34-40.
DOI URL |
| [46] |
Y. Jiang, Y. Chen, D. Fang, L. Jin, Mater. Sci. Eng. A 641 (2015) 256-262.
DOI URL |
| [47] |
C. Meng, Z. Chen, G. Li, P. Dong, J. Alloys. Compd 711 (2017) 258-266.
DOI URL |
| [48] |
J. Guo, L.L. Chang, Y.R. Zhao, Y.P. Jin, Mater. Charact. 148 (2019) 35-42.
DOI |
| [49] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, Mater. Sci. Eng. A 678 (2016) 329-338.
DOI URL |
| [50] |
F. Wang, J.J. Bhattacharyya, S.R. Agnew, Mater. Sci. Eng. A 666 (2016) 114-122.
DOI URL |
| [51] |
X. Luo, Z. Feng, T. Yu, J. Luo, T. Huang, G. Wu, N. Hansen, X. Huang, Acta Mater 183 (2020) 398-407.
DOI URL |
| [52] |
J. Jain, P. Cizek, W.J. Poole, M.R. Barnett, Acta Mater 61 (2013) 4091-4102.
DOI URL |
| [53] |
Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Metall. Mater. Trans. A 50 (2019) 4344-4363.
DOI URL |
| [54] |
B. Pourbahari, H. Mirzadeh, M. Emamy, R. Roumina, Adv. Eng. Mater. 20 (2018) 1701171.
DOI URL |
| [55] |
Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, A. Bahmani, Mater. Sci. Eng. A 774 (2020) 138929.
DOI URL |
| [56] |
Z. Yang, C. Xu, T. Nakata, S. Kamado, Mater. Sci. Eng. A 800 (2021) 140330.
DOI URL |
| [57] | X.X. Huang, N. Hansen, N. Tsuji, Sci. 312 (2006) 249-251. |
| [58] | Y Yang, X.M Xiong, J Chen, X.D Peng, D.L Chen, F.S Pan, J. Magnes. Alloys. 9 (3) (2021) 705-747. |
| [59] | K.B Nie, Z.H Zhu, K.K Deng, J.G Han, J. Magnes. Alloys. 8 (2020) 676-691. |
| [60] | J.X Zhang, J.S Zhang, F.Y Han, W Liu, L.L Zhang, R Zhao, C.X Xu, J Dou, J. Magnes. Alloys 42 (2020) 130-142. |
| [61] | J.P Hadorn, R.P Mulay, K Hantzsche, S.B Yi, J Bohlen, D Letzig, S R Agnew, Met-all Mater Trans A 43A (4) (2012) 1363-1375. |
| [1] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
| [2] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
| [3] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
| [4] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
| [5] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
| [6] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
| [7] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
| [8] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| [9] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
| [10] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
| [11] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [12] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
| [13] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
| [14] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
| [15] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
