J. Mater. Sci. Technol. ›› 2022, Vol. 103: 197-208.DOI: 10.1016/j.jmst.2021.06.060
• Research Article • Previous Articles Next Articles
Zs. Veresa,b, A. Roósza,b, A. Rónaföldia,b, A. Sychevab, M. Svédaa,b,*(
)
Received:2021-05-21
Revised:2021-06-15
Accepted:2021-06-19
Published:2022-03-20
Online:2021-09-08
Contact:
M. Svéda
About author:* E-mail address: femmaria@uni-miskolc.hu (M. Svéda).Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring[J]. J. Mater. Sci. Technol., 2022, 103: 197-208.
Fig. 1. (a) Primary and secondary melt flow in the unidirectionally solidified sample, (b) simulated secondary flow in the pure liquid phase [18], (c) simulated “Christmas Tree Like” (CTL) microstructure [18], (d) mechanism of columnar/equiaxed transition (CET) induced by fragmentation of the dendrites.
Fig. 2. Sketch of the solidification facility. 1: Sample, 2: alumina capsule, 3: quartz tube, 4: copper cooling core, 5: furnace with four heating zones, 6: step motor, 7: RMF inductor, 8: water cooling, 9: basement.
Fig. 5. The grain structure of the sample with the measuring spots (white lines): (a) first non-stirred part, (b) first transient zone (CET), (c) stirred part, (d) second transient zone (ECT) and second non-stirred part.
| Number of line/Distance from the bottom of the sample, mm | ||||||
|---|---|---|---|---|---|---|
| First non-stirred part | 1/19.8 | 2/22.1 | 2/25.1 | |||
| First transient zone | 4/37.1 | 5/40.1 | 6/43.1 | 7/46.1 | 8/49.1 | 9/52.1 |
| Stirred part | 10/58.4 | 11/61.4 | 12/64.4 | |||
| Second transient zone | 13/71.6 | 14/74.6 | 15/77.6 | 16/80.6 | 17/83.6 | 18/86.6 |
Table 1 The distance of the measuring lines from the bottom of the sample.
| Number of line/Distance from the bottom of the sample, mm | ||||||
|---|---|---|---|---|---|---|
| First non-stirred part | 1/19.8 | 2/22.1 | 2/25.1 | |||
| First transient zone | 4/37.1 | 5/40.1 | 6/43.1 | 7/46.1 | 8/49.1 | 9/52.1 |
| Stirred part | 10/58.4 | 11/61.4 | 12/64.4 | |||
| Second transient zone | 13/71.6 | 14/74.6 | 15/77.6 | 16/80.6 | 17/83.6 | 18/86.6 |
Fig. 6. Grain structure on the parallel section of the sample at different areas: (a) first transient zone, (b) stirred part, (c) second transient zone, (d) second non stirred part.
Fig. 8. Grain structure: (a) first non-stirred part, (b) stirred part and dendritic structure, (c) first non-stirred part, (d) stirred part on the cross-section.
| Cross-section | Parallel section | ||||
|---|---|---|---|---|---|
| Grain/sample | Equivalent circle area, mm2 | Equivalent diameter mm | Number of grains | Average length/width | |
| First non-stirred part | 55 | 0.9 | 1.08 | 17 | 9 |
| Stirred part | 150 | 0.35 | 0.66 | 97 | 3.1 |
| Second non-stirred part | 88 | 0.5 | 0.8 | 21 | 5.1 |
Table 2 Parameters of grains.
| Cross-section | Parallel section | ||||
|---|---|---|---|---|---|
| Grain/sample | Equivalent circle area, mm2 | Equivalent diameter mm | Number of grains | Average length/width | |
| First non-stirred part | 55 | 0.9 | 1.08 | 17 | 9 |
| Stirred part | 150 | 0.35 | 0.66 | 97 | 3.1 |
| Second non-stirred part | 88 | 0.5 | 0.8 | 21 | 5.1 |
Fig. 10. The measured amount of eutectic: (a) first non-stirred part, (d) stirred part, the calculated Si concentration, (b) first non-stirred part, (e) stirred part, the SDAS, (c) first non-stirred part, (f) stirred part.
| [1] | M. Wu, A. Ludwig, A. Kharicha, Steel Res. Int. 87 (2017) 1700037. |
| [2] |
J. Li, M. Wu, A. Karachi, A. Ludwig, Int. J. Heat Mass Transf. 72 (2014) 668-679.
DOI URL |
| [3] | S. Michelic, M. Riedler, BHM Berg-und Hüttenmännische Monatshefte 161 (2016) S39-S43. |
| [4] |
L. Heyvaert, M. Bedel, M. Založnik, H. Combeau, Metall. Mater. Trans. A 48 (2017) 4713-4734.
DOI URL |
| [5] |
A. Roósz, Z. Gácsi, E. Fuchs, Acta Metall 32 (1984) 1745-1754.
DOI URL |
| [6] |
A. Roósz, H.E. Exner, Acta Metall. Mater. 38 (1990) 375-380.
DOI URL |
| [7] |
G. Kasperovich, T. Volkmann, L. Ratke, D. Herlach, Metall. Mater. Trans. A 39 (2008) 1183-1191.
DOI URL |
| [8] |
R. Chen, Q. Xu, B. Liu, J. Mater. Sci. Technol. 30 (2014) 1311-1320.
DOI |
| [9] |
O. Shatbhai, S. Roy, S. Ghosh, Appl. Therm. Eng. 113 (2017) 386-412.
DOI URL |
| [10] |
G. Guillemot, C.-A. Gandin, H. Combeau, ISIJ Int 46 (2006) 880-895.
DOI URL |
| [11] |
M. Wu, A. Ludwig, Metall. Mater. Trans. A 37 (2006) 1613-1631.
DOI URL |
| [12] |
M. Wu, A. Ludwig, Acta Mater 57 (2009) 5632-5644.
DOI URL |
| [13] |
V. Voller, C. Prakash, Int. J. Heat Mass Transf. 30 (1987) 1709-1719.
DOI URL |
| [14] |
J. Ni, C. Beckermann, Metall. Mater. Trans. B 22 (1991) 349-361.
DOI URL |
| [15] |
M. Wu, A. Ludwig, A. Bührig-Polaczek, M. Fehlbier, P.R. Sahm, Int. J. Heat Mass Transf. 46 (2003) 2819-2832.
DOI URL |
| [16] |
M. Wu, A. Fjeld, A. Ludwig, Comput. Mater. Sci. 50 (2010) 32-42.
DOI URL |
| [17] | M. Wu, A. Ludwig, A. Fjeld, Comput. Mater. Sci. 50 (2010) 43-58. |
| [18] |
O. Budenkova, A. Noeppel, J. Kovács, A. Rónaföldi, A. Roósz, A.M. Bianchi, F. Baltaretu, M. Medina, Y. Fautrelle, Mater. Sci. Forum 649 (2010) 269-274.
DOI URL |
| [19] | H. Zhang, M. Wu, Y. Zheng, A. Ludwig, A. Karicha, Mater. Today Commun. 22 (2020) 100842. |
| [20] |
S. Steinbach, L. Ratke, Metall. Mater. Trans. A 38 (2007) 1388-1394.
DOI URL |
| [21] | P. Mikołajczak, L. Ratke, IOP Conf. Ser. Mater. Sci. Eng., 27, 2012. |
| [22] |
C.H.U. Gomes, R.H.L. Kikuchi, A.D. Barros, J.N.S. da Silva, M.A.P.D. da Silva, A.L.S. Moreira, O.F.L. da Rocha, Mater. Res. 18 (2015) 1362-1371.
DOI URL |
| [23] |
G. Reinhart, C.A. Gandin, N. Mangelinck-Noel, H. Nguyen-Thi, J.E. Spinelli, J. Baruchel, B. Billia, Acta Mater 61 (2013) 4765-4777.
DOI URL |
| [24] |
M.D. Dupouy, D. Camel, J. Cryst. Growth 183 (1998) 469-489.
DOI URL |
| [25] |
J.E. Spinelli, I.L. Ferreira, A. Garcia, J. Alloys Compd. 384 (2004) 217-226.
DOI URL |
| [26] |
W.D. Griffiths, L. Xiao, D.G. McCartney, Mater. Sci. Eng. A 205 (1996) 31-39.
DOI URL |
| [27] |
Y.Z. Li, N. Mangelinck-Noël, G. Zimmermann, L. Sturz, H. Nguyen-Thi, J. Alloys Compd. 836 (2020) 155458.
DOI URL |
| [28] |
H. Nguyen-Thi, G. Reinhart, B. Billia, C.R. Mec. 345 (2017) 66-77.
DOI URL |
| [29] |
A. Rónaföldi, J. Kovács, A. Roósz, Trans. Indian Inst. Met. 62 (2009) 475-477.
DOI URL |
| [30] |
D.R. Liu, N. Mangelinck-Noël, C.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, B. Billia, Acta Mater 64 (2014) 253-265.
DOI URL |
| [31] |
I.V. Barmin, A.S. Senchenkov, A. Greif, O. Pätzold, U. Wunderwald, A. Cröll, A. Mitric, Magnetohydrodynamics 45 (2009) 325-332.
DOI URL |
| [32] |
Y.Z. Li, N. Mangelinck-Noël, G. Zimmermann, L. Sturz, H. Nguyen-Thi, J. Alloys Compd. 749 (2018) 344-354.
DOI URL |
| [33] |
G. Zimmermann, L. Sturz, H. Nguyen-Thi, N. Mangelinck-Noel, Y.Z. Li, C.-A. Gandin, R. Fleurisson, G. Guillemot, S. McFadden, R.P. Mooney, P. Voorhees, A. Roosz, A. Ronaföldi, C. Beckermann, A. Karma, C.-H. Chen, N. Warnken, A. Saad, G.-U. Grün, M. Grohn, JOM 69 (2017) 1269-1279.
DOI URL |
| [34] |
E.G. Fuchs, Mater. Sci. Forum 649 (2010) 1-9.
DOI URL |
| [35] |
G. Chirita, D. Soares, F.S. Silva, Mater. Des. 29 (2008) 20-27.
DOI URL |
| [36] |
J.F. Löffler, W.L. Johnson, Intermetallics 10 (2002) 1167-1175.
DOI URL |
| [37] |
Y. Yang, B. Song, Z. Yang, G. Song, Z. Cai, Z. Guo, Materials (Basel) 9 (2016) 1001.
DOI URL |
| [38] | A. Viardin, R. Berger, L. Sturz, M. Apel, U. Hech, IOP Conf. Ser. Mater. Sci. Eng., 117, 2016. |
| [39] |
A. Viardin, J. Zollinger, L. Sturz, M. Apel, J. Eiken, R. Berger, U. Hecht, Comput. Mater. Sci. 172 (2020) 109358.
DOI URL |
| [40] | A. Roósz, A. Rónaföldi, J. Kovács, M. Svéda, in: Procee dings of the 6th Decennial International Conference on Solidification Processing, Old Windsor, U.K., July 25-28, 2017. |
| [41] | M. Svéda, A. Sycheva, J. Kovács, A. Rónaföldi, A. Roósz, Mater. Sci.Forum 790-791 (2014) 414. |
| [42] | J. Kovács, A. Rónaföldi, G. Gergely, Z. Gácsi, A. Roósz, in: Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, U.K., 25-28, 2007. |
| [43] |
Y. Zuo, J. Cui, D. Mou, Q. Zhu, X. Wang, L. Li, Trans. Nonferrous Met. Soc. China 24 (2014) 2408-2413.
DOI URL |
| [44] | G. Gerbeth, K. Eckert, S. Odenbach, Eur. Phys J. -Spec.Top. 220 (2013) 123-137. |
| [45] |
H. Li, J. Jie, H. Chen, P. Zhang, T. Wang, T. Li, Mater. Sci. Eng. A 624 (2015) 140-147.
DOI URL |
| [46] |
S.C. Lim, P.E. Yoon, J.S. Kim, J. Mater. Sci. Lett. 16 (1997) 104-109.
DOI URL |
| [47] |
B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar, Mater. Sci. Eng. A 402 (2005) 55-65.
DOI URL |
| [48] |
B. Fragoso, H. Santos, J. Mater. Res. Technol. 2 (2013) 100-109.
DOI URL |
| [49] |
S. Nafisi, D. Emadi, M.T. Shehata, R. Ghomashchi, Mater. Sci. Eng. A 432 (2006) 71-83.
DOI URL |
| [50] | J. Kovács, G. Gergely, Z. Gácsi, A. Roósz, A. Rónaföldi, Trans. Indian Inst. Met. 60 (2007) 149-154. |
| [51] |
J. Kovács, A. Rónaföldi, Á. Kovács, A. Roósz, Trans. Indian Inst. Met. 62 (2009) 461-464.
DOI URL |
| [52] |
T. Wang, E. Wang, Y. Delannoy, Y. Fautrelle, O. Budenkova, IOP Conf. Ser. Mater. Sci. Eng. 529 (2019) 012030.
DOI URL |
| [53] | H. Zang, M. Wu, A. Ludwig, A. Kharicha, IOP Conf. Ser. Mater. Sci. Eng., 861, 2020. |
| [54] | D.R. Liu, N. Mangelinck-Noel, Ch-A. Gandin, G. Zimmermann, L. Sturz, N. Nguen Thi, B. Billia, in:IOPConf.Ser.Mater.Sci.Eng., 117, 2016,p.01009. |
| [55] | J.D. Hunt, Mater. Sci. Eng. 65 (1984) 75-83. |
| [56] |
Y. Sun, H. Muta, K. Kurosaki, Y. Ohishi, Int. J. Thermophys. 40 (2019) 31.
DOI URL |
| [57] |
O.А. Chikova, K.V. Nikitin, O.P. Moskovskikh, V.S. Tsepelev, Acta Metall. Slovaca 22 (2016) 153-163.
DOI URL |
| [58] |
A. Rónaföldi, Zs. Veres, A. Roósz, Cryst. Growth 564 (2021) 126078.
DOI URL |
| [59] | P. Marty, W.L. Martin, P. Trombetta, T. Tomasino, J.P. Garandet, in: A. Alemany, P. Marty, J.P. Thibault (Eds.), Fluid Mechanics and Its Applications, Springer, Dordrecht, 1999, pp. 327-343. |
| [60] | O. Budenkova, F. Baltaretu, J. Kovács, A. Roósz, A. Rónaföld, A-M. Bianchi, Y. Fautrelle, IOP Conf. Ser. Mater. Sci. Eng., 33, 2012. |
| [61] | A. Rónaföldi, J. Kovács, A. Roósz, in: Proceedings of 6th International Electro-magnetic Processing of Materials (EPM) Conference, Dresden, Germany, Octo-ber 19-23, 2009. |
| [62] | N. Whisler, T.Z. Kattamis, J. Cryst. Growth 15 (1972) 20-24. |
| [63] |
D.H. Kirkwood, Mater. Sci. Eng. 73 (1985) L1-L4.
DOI URL |
| [64] | A. Roósz, Cast Met 1 (1988) 223-226. |
| [65] | W. Kurz, D.J. Fisher, in: Fundemantal of Solidification, Trans. Tech Publication, Aedermannsdorf, Switzerland, 1992, pp. 1-157. third ed. |
| [66] |
D.G. McCartney, J.D. Hunt, Acta Mater 29 (1981) 1851-1863.
DOI URL |
| [67] |
J. Jacobi, K. Schwerdtfeger, Metall. Trans. A 7 (1976) 811-820.
DOI URL |
| [68] |
M.A. Taha, J. Mater. Sci. Lett. 5 (1986) 307-310.
DOI URL |
| [69] |
D. Bouchard, J.S. Kirkaldy, Metall. Mater. Trans. B 28 (1997) 651-663.
DOI URL |
| [70] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
| [71] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
| [72] |
Y. Lia, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
| [73] | Zs. Veres, A. Roósz, Sci.Forum 473-474 (2005) 171-176. |
| [1] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
| [2] | Ruijie ZHANG, Zhi HE, Zhongwei CHEN, Wanqi JIE. Prediction of Solid-Liquid Interface Stability by Coupling M-S Model with CALPHAD Method [J]. J Mater Sci Technol, 2004, 20(04): 466-468. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
