J. Mater. Sci. Technol. ›› 2022, Vol. 101: 1-17.DOI: 10.1016/j.jmst.2021.05.065
Sibing Wanga, Wenchen Xua,*(), Bin Shaoa, Guoping Yangb, Yingying Zonga, Wanting Suna, Zhongze Yanga, Debin Shana,*(
)
Received:
2020-10-21
Revised:
2020-03-27
Accepted:
2020-03-27
Published:
2022-02-28
Online:
2021-08-06
Contact:
Wenchen Xu,Debin Shan
About author:
shandebin@hit.edu.cn (D. Shan).Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy[J]. J. Mater. Sci. Technol., 2022, 101: 1-17.
Fig. 1. (a) Illustration of shear spinning, (b) schematic diagram of 2 passes shear spinning experimental procedure, (c) shear spinning of Ti2AlNb alloy by gas torches, (d) illustrations of sampling location in spun workpieces.
Scheme | Heat treatment parameters | Microstructure |
---|---|---|
H1 | 960 °C/2 h AC | B2 + primary O + primary α2 |
H2 | 960 °C/2 h AC+820 °C/12 h FC | B2 + primary O + acicular secondary O+ high amount spheroidized α2 |
H3 | 960 °C/2 h AC+850 °C/12 h FC | B2 + primary O + acicular secondary O + high amount spheroidized α2 |
Table 1 The applied heat treatment schemes and the corresponding phase constitutes for the Ti2AlNb alloy and in this study.
Scheme | Heat treatment parameters | Microstructure |
---|---|---|
H1 | 960 °C/2 h AC | B2 + primary O + primary α2 |
H2 | 960 °C/2 h AC+820 °C/12 h FC | B2 + primary O + acicular secondary O+ high amount spheroidized α2 |
H3 | 960 °C/2 h AC+850 °C/12 h FC | B2 + primary O + acicular secondary O + high amount spheroidized α2 |
Fig. 2. Initial microstructure of the as-received Ti2AlNb sheet: (a) metallographic image, (b, c) BSE images, (d) TEM bright field image and selected area electron diffraction (SAED) patterns.
Fig. 3. Tensile strain-stress curves and fracture morphologies of as-received alloy at different temperatures: (a) tensile strain-stress curves, (b-d) fracture morphologies at room temperature, 650 °C and 900 °C, respectively.
Material | UTS (MPa) | YS (MPa) | εf (%) | UTS (MPa) | YS (MPa) | εf (%) | UTS (MPa) | YS (MPa) | εf (%) |
---|---|---|---|---|---|---|---|---|---|
RT | 650 °C | 900 °C | |||||||
AR | 1136±56 | 935±45 | 9.5±0.5 | 782±39 | 675±33 | 18.3±0.9 | 200±10 | 145±7 | 75.6±3.8 |
SP1 | 1069±53 | 956±47 | 1.1±0.1 | 1163±58 | 1075±53 | 8.9±0.4 | 297±14 | 277±10 | 42.7±2.1 |
SP1-H1 | 1174±57 | 1010±48 | 10.5±0.5 | 1020±51 | 834±41 | 12.9±0.6 | 248±12 | 231±11 | 56.6±2.8 |
SP1-H2 | 1087±54 | 960±47 | 6.0±0.3 | 792±39 | 703±35 | 14.9±0.7 | 237±11 | 215±10 | 61.7±3.1 |
SP1-H3 | 1045±52 | 880±44 | 5.6±0.3 | 733±35 | 678±33 | 17.3±0.9 | 232±12 | 207±10 | 72.1±3.6 |
SP2 | 902±45 | 824±41 | 0.6±0.1 | 932±45 | 856±42 | 12.5±0.6 | 210±10 | 189±9 | 78.7±3.9 |
SP2-H1 | 968±33 | 901±44 | 6.5±0.3 | 934±46 | 691±34 | 15.1±0.8 | 172±8 | 162±8 | 91.6±4.6 |
SP2-H2 | 815±40 | 785±39 | 1.2±0.1 | 747±37 | 674±33 | 16.4±0.8 | 170±8 | 158±7 | 94.8±4.7 |
SP2-H3 | 804±40 | 764±38 | 1.1±0.1 | 615±31 | 467±23 | 21.9±1.1 | 179±9 | 155±7 | 116.9±5.8 |
Table 2 Mechanical property of as-received (AR), SP1, SP2, HTSP1 and HTSP2 at room temperature (RT), 650 °C and 900 °C with a strain rate of 0.001 s-1.
Material | UTS (MPa) | YS (MPa) | εf (%) | UTS (MPa) | YS (MPa) | εf (%) | UTS (MPa) | YS (MPa) | εf (%) |
---|---|---|---|---|---|---|---|---|---|
RT | 650 °C | 900 °C | |||||||
AR | 1136±56 | 935±45 | 9.5±0.5 | 782±39 | 675±33 | 18.3±0.9 | 200±10 | 145±7 | 75.6±3.8 |
SP1 | 1069±53 | 956±47 | 1.1±0.1 | 1163±58 | 1075±53 | 8.9±0.4 | 297±14 | 277±10 | 42.7±2.1 |
SP1-H1 | 1174±57 | 1010±48 | 10.5±0.5 | 1020±51 | 834±41 | 12.9±0.6 | 248±12 | 231±11 | 56.6±2.8 |
SP1-H2 | 1087±54 | 960±47 | 6.0±0.3 | 792±39 | 703±35 | 14.9±0.7 | 237±11 | 215±10 | 61.7±3.1 |
SP1-H3 | 1045±52 | 880±44 | 5.6±0.3 | 733±35 | 678±33 | 17.3±0.9 | 232±12 | 207±10 | 72.1±3.6 |
SP2 | 902±45 | 824±41 | 0.6±0.1 | 932±45 | 856±42 | 12.5±0.6 | 210±10 | 189±9 | 78.7±3.9 |
SP2-H1 | 968±33 | 901±44 | 6.5±0.3 | 934±46 | 691±34 | 15.1±0.8 | 172±8 | 162±8 | 91.6±4.6 |
SP2-H2 | 815±40 | 785±39 | 1.2±0.1 | 747±37 | 674±33 | 16.4±0.8 | 170±8 | 158±7 | 94.8±4.7 |
SP2-H3 | 804±40 | 764±38 | 1.1±0.1 | 615±31 | 467±23 | 21.9±1.1 | 179±9 | 155±7 | 116.9±5.8 |
Fig. 4. Photos of the as-received circular plate and spun workpieces: (a) as-received circular plate, (b) successful 1st pass pun workpiece, (c) failed 2nd pass spun workpiece processed by continuous spinning without inter-pass heat treatment, (d) successful 2nd pass spun workpiece made by the optimized process with inter-pass heat treatment.
Fig. 5. Tensile strain-stress curves and fracture morphologies of SP1 at different temperatures: (a) tensile strain-stress curves, (b-d) fracture morphology at room temperature, 650 °C and 900 °C, respectively.
Fig. 7. Strain-stress curves of HTSP1 at different temperatures and fracture morphologies of HTSP1 at 900 °C: (a, b, c) strain-stress curves of HTSP1 at room temperature, 650 °C and 900 °C, respectively; (d, e, f) typical fracture morphologies of SP1-H1, SP1-H2 and SP1-H3 specimens at 900 °C, respectively.
Fig. 8. Micrographs of HTSP1: (a, b) BSE images of SP1-H1 specimen; (c) bright field image of TEM result of SP1-H1 specimen; (d) diffraction patterns of B2, α2 and O phases in (c); (e, f) BSE images of SP1-H2 specimen; (g, h) BSE images of SP1-H3 specimen.
Fig. 9. Strain-stress curves and fracture morphologies of SP2 at different temperatures: (a) strain-stress curves, (b-d) typical fracture morphologies at room temperature, 650 °C and 900 °C, respectively.
Fig. 11. Strain-stress curves of HTSP2 at different temperatures and fracture morphologies of HTSP1 at room temperature: (a-c) strain-stress curves of HTSP2 at room temperature, 650 °C and 900 °C, respectively; (d-f) typical fracture morphologies of SP2-H1, SP2-H2 and SP2-H3 at room temperature, respectively.
Fig. 14. B2 phase invers pole figure (IPF), pole figure (PF) and ODF in RD-TD plane of the as-received sheet and spun workpieces: (a-c) AR, (d-f) SP1, (g-i) SP2, (j) standard stereographic projection of some key orientations.
Fig. 15. Schematic diagram of texture evolution mechanism of B2 phase during two passes spinning: (a) <111>//ND texture of as-received alloy, (b) <111>//ND and <001>//ND texture of 1st pass spun workpiece, (c) <001>//ND texture of 2nd pass spun workpiece.
Fig. 16. Schmid factors of B2 phase in RD under different slip systems including {110}<001>, {110}<111> and{112}<111>: (a-c) AR, (d-f) SP1, (g-i) SP2.
Fig. 17. Schmid factors of B2 phase in ND under different slip systems including {110}<001>, {110}<111> and{112}<111>: (a-c) AR, (d-f) SP1, (g-i) SP2.
Slip system | AR | SP1 | SP2 |
---|---|---|---|
{110}<001> | 0.41 | 0.31 | 0.24 |
{110}<111> | 0.44 | 0.47 | 0.48 |
{112}<111> | 0.46 | 0.47 | 0.48 |
Table 3 Mean Schmid factors of three different slip systems in RD
Slip system | AR | SP1 | SP2 |
---|---|---|---|
{110}<001> | 0.41 | 0.31 | 0.24 |
{110}<111> | 0.44 | 0.47 | 0.48 |
{112}<111> | 0.46 | 0.47 | 0.48 |
Slip system | AR | SP1 | SP2 |
---|---|---|---|
{110}<001> | 0.45 | 0.32 | 0.11 |
{110}<111> | 0.36 | 0.42 | 0.44 |
{112}<111> | 0.39 | 0.45 | 0.48 |
Table 4 Mean Schmid factors of three different slip systems in ND
Slip system | AR | SP1 | SP2 |
---|---|---|---|
{110}<001> | 0.45 | 0.32 | 0.11 |
{110}<111> | 0.36 | 0.42 | 0.44 |
{112}<111> | 0.39 | 0.45 | 0.48 |
[1] | C.C. Wong, T.A. Dean, J. Lin, Int. J. Mach. Tools Manuf. 43 (2003) 1419-1435. |
[2] | M. Zhan, X. Wang, H. Long, Mater. Des. 108 (2016) 207-216. |
[3] | Q. Xia, G. Xiao, H. Long, X. Cheng, X. Sheng, Int. J. Mach. Tools Manuf. 85 (2014) 100-121. |
[4] | D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, Acta Metall 36 (1988) 871-882. |
[5] | K. Muraleedharan, T.K. Nandy, D. Banerjee, S. Lele, Intermetallics 3 (1995) 187-199. |
[6] | M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, F. Tang, Met. Mater. Int. 9 (2003) 265-272. |
[7] | C.J. Cowen, C.J. Boehlert, Intermetallics 14 (2006) 412-422. |
[8] | J. Kumpfert, Adv. Eng. Mater. 3 (2001) 851-864. |
[9] | B. Li, K. Zhang, W. Yao, B. Xu, Mater. Charact. 150 (2019) 38-51. |
[10] | Y. Wu, G. Liu, S. Jin, Z. Liu, Int. Adv. Manuf. Technol. 92 (2017) 4583-4594. |
[11] | C.W. Wang, T. Zhao, G. Wang, J. Gao, H. Fang, J. Mater. Process. Technol. 222 (2015) 122-127. |
[12] | Z. Du, S. Jiang, K. Zhang, Z. Lu, B. Li, D. Zhang, Mater. Des. 104 (2016) 242-250. |
[13] | A. Partridge, E.F. Shelton, Air & Space Europe 3 (2001) 170-173. |
[14] | C.J. Boehlert, Mater. Sci. Eng. A 279 (2000) 118-129. |
[15] | S. Emura, K. Tsuzaki, K. Tsuchiya, Mater. Sci. Eng. A 528 (2010) 355-362. |
[16] | S.R. Dey, S. Suwas, J.J. Fundenberger, J.X. Zou, R.K. Ray, Mater. Sci. Eng. A 483 (2008) 551-554. |
[17] | C. Xue, W. Zeng, W. Wang, X. Liang, J. Zhang, Mater. Sci. Eng. A 573 (2013) 183-189. |
[18] | W. Wang, W. Zeng, C. Xue, X. Liang, J. Zhang, Intermetallics 56 (2015) 79-86. |
[19] | J. Peng, M. Yong, S. Li, X. Sun, Mater. Sci. Eng. A 299 (2001) 75-80. |
[20] | B. Shao, D. Shan, B. Guo, Y. Zong, Int. J. Plast. 113 (2019) 18-34. |
[21] | S. Wang, W. Xu, Y. Zong, X. Zhong, D. Shan, Metals 8 (2018) 382. |
[22] | L. Radovi ´C, M. Nika čEvi ´C, B. Jordovi ´C, Trans. Nonferrous Met. Soc. China 22 (2012) 991-1000. |
[23] | M. Zhan, Q.-l. Wang, D. Han, H. Yang, Trans. Nonferrous Met. Soc. China 23 (2013) 1617-1627. |
[24] | C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Metall. Mater. Trans. A 30 (1999) 2305-2323. |
[25] | K. Zhang, Z. Lei, Y. Chen, K. Yang, Y. Bao, Mater. Sci. Eng. A 744 (2019) 436-444. |
[26] | C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, D.B. Miracle, Metall. Mater. Trans. A 28 (1997) 309-323. |
[27] | C.J. Boehlert, Metall. Mater. Trans. A 32 (2001) 1977-1988. |
[28] | W. Chen, Z.Y. Chen, C.C. Wu, J.W. Li, Z.Y. Tang, Q.J. Wang, Intermetallics 75 (2016) 8-14. |
[29] | Z. Lei, K. Zhang, H. Zhou, L. Ni, Y. Chen, J. Mater. Process. Technol. 255 (2018) 477-487. |
[30] | D. Banerjee, Philos. Mag. A 72 (1995) 1559-1587. |
[31] | B. Shao, D. Shan, B. Guo, Y. Zong, Int. J. Plast. 113 (2019) 18-34. |
[32] | J.P. Quast, C.J. Boehlert, Metall. Mater. Trans. A 38 (2007) 529-536. |
[33] | C. Xue, W. Zeng, B. Xu, X. Liang, J. Zhang, S. Li, Intermetallics 29 (2012) 41-47. |
[34] | S. Emura, A. Araoka, M. Hagiwara, Scr. Mater. 48 (2003) 629-634. |
[35] | S. Wang, W. Xu, Y. Zong, X. Zhong, D. Shan, Metals 8 (2018) 382. |
[36] | W. Xu, X. Jin, K. Huang, Y. Zong, S. Wu, X. Zhong, F. Kong, D. Shan, S. Nutt, Mater. Sci. Eng. A 705 (2017) 200-209. |
[37] | Y.M. Zhu, H. Saka, Philos. Mag. A 59 (1989) 661-676. |
[38] | P. Veyssière, Mater. Sci. Eng.A 309- 310 (2001) 44-48. |
[39] | H. Zhao, B. Lu, M. Tong, R. Yang, Mater. Sci. Eng. A 679 (2017) 455-464. |
[1] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[2] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[3] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[4] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[5] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[6] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[7] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[8] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
[9] | Hongyu Zhang, Na Yan, Hongyan Liang, Yongchang Liu. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80(0): 203-216. |
[10] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[11] | Guanyu Deng, Xing Zhao, Lihong Su, Peitang Wei, Liang Zhang, Lihua Zhan, Yan Chong, Hongtao Zhu, Nobuhiro Tsuji. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 183-195. |
[12] | S. Samat, M.Z. Omar, A.H. Baghdadi, I.F. Mohamed, A. Rajabi, A.M. Aziz. Microstructural evolution, dislocation density and tensile properties of Al-6.5Si-2.1Cu-0.35Mg alloy produced by different casting processes [J]. J. Mater. Sci. Technol., 2021, 95(0): 145-157. |
[13] | Zhenni Lei, Pengfei Gao, Xianxian Wang, Mei Zhan, Hongwei Li. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming [J]. J. Mater. Sci. Technol., 2021, 86(0): 77-90. |
[14] | Zibing An, Shengcheng Mao, Yinong Liu, Hao Zhou, Yadi Zhai, Zhiyong Tian, Cuixiu Liu, Ze Zhang, Xiaodong Han. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92(0): 195-207. |
[15] | K. Yamamoto, M. Takahashi, Y. Kamikubo, Y. Sugiura, S. Iwasawa, T. Nakata, S. Kamado. Optimization of Cu content for the development of high-performance T5-treated thixo-cast Al-7Si-0.5Mg-Cu (wt.%) alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 178-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||