J. Mater. Sci. Technol. ›› 2021, Vol. 91: 134-147.DOI: 10.1016/j.jmst.2021.02.050
• Research Article • Previous Articles Next Articles
Kai Chena, Xuenan Gua,*(), Hui Suna, Hongyan Tanga, Hongtao Yangb, Xianghui Gonga,*(
), Yubo Fana,*(
)
Received:
2020-12-31
Revised:
2021-01-27
Accepted:
2021-02-19
Published:
2021-11-20
Online:
2021-11-20
Contact:
Xuenan Gu,Xianghui Gong,Yubo Fan
About author:
yubofan@buaa.edu.cn (Y. Fan).Kai Chen, Xuenan Gu, Hui Sun, Hongyan Tang, Hongtao Yang, Xianghui Gong, Yubo Fan. Fluid-induced corrosion behavior of degradable zinc for stent application[J]. J. Mater. Sci. Technol., 2021, 91: 134-147.
Fig. 1. Schematic diagram of the dynamic corrosion test devices, (a) an overview of the dynamic corrosion test devices, (b) the macro photograph of the flow chamber, (c) components of the flow chamber. The pure Zn sample (Φ10 × 1 mm after mechanical polishing, denoted by green color) was fixed in a PVC panel (denoted by blue color) with a silicone loop (Φ10 × 1 mm, denoted by yellow color). Samples together with the PVC panel were embedded in parallel plate flow chamber (denoted by gray color).
Fig. 2. Corrosion surface morphologies of pure Zn after immerison in static or laminar Hank' solution for 24, 72, 120 and 168 h (the second and fourth line indicates the higher magnification of SEM pictures).
Fig. 3. EDS results of pure Zn immersed in (a) static and (b) dynamic Hank' solution for 168 h, Points 1-4 in Fig. 2(a) correspond to the EDS results in Fig. 3(a); Points 5-8 in Fig. 2(a) correspond to the EDS results in Fig. 3(b).
Fig. 6. XRD patterns of pure Zn immsered in (a) static and (b) dynamic state Hank' solution for 24, 72, 120 and 168 h, and (c) the comparison between XRD patterns at 168 h.
Fig. 7. FTIR patterns of pure Zn immsered in (a) static and (b) dynamic state Hank' solution for 24, 72, 120 and 168 h, and (c) the comparison between FTIR patterns at 168 h.
Fig. 8. (a) Total XPS spectras of pure Zn immersed in static Hank' solution for 24, 72, 120 and 168 h, and high resolution XPS spectras of Zn 2p3/2, Ca 2p and P 2p at (b) 24 h, (c) 72 h, (d) 120 h and (e) 168 h, respectively.
Fig. 9. The varation trend of (a) pH value and (b) the Zn2+ concentration of pure Zn immersed in static and dynamic Hank' solution for 168 h. *P < 0.05 and **P < 0.01.
Fig. 10. (a) Weight loss change and (b) the corrosion rate (derived from weight loss) of pure Zn immersed in static and dynamic solution for 168 h. *P < 0.05.
Fig. 12. Potentiodynamic polarization (PDP) curves of pure Zn immersed in (a) static and (b) dynamic state Hank' solution, (c) the PDP curves at 72 h and (d) the corrosion rate of pure Zn soaked in static and dynamic state solution.
Flow state | Immersion time (h) | Ecorr (V) | Icorr (A/cm2) | Corrosion rate (mm/yr) | βc (V/dec) |
---|---|---|---|---|---|
Original | 0 | -1.059 | 5.034E-06 | 0.075 | 0.124 |
Static | 24 | -1.031 | 2.951E-06 | 0.044 | 0.122 |
72 | -1.001 | 1.761E-06 | 0.026 | 0.120 | |
120 | -1.022 | 2.237E-06 | 0.035 | 0.118 | |
168 | -1.029 | 2.675E-06 | 0.040 | 0.120 | |
Dynamic | 24 | -1.011 | 2.792E-06 | 0.042 | 0.127 |
72 | -1.019 | 9.080E-07 | 0.013 | 0.104 | |
120 | -1.045 | 1.666E-06 | 0.025 | 0.124 | |
168 | -1.015 | 2.421E-06 | 0.036 | 0.122 |
Table 1 Obtained polarization data of pure Zn immersed in static and dynamic Hank' solution.
Flow state | Immersion time (h) | Ecorr (V) | Icorr (A/cm2) | Corrosion rate (mm/yr) | βc (V/dec) |
---|---|---|---|---|---|
Original | 0 | -1.059 | 5.034E-06 | 0.075 | 0.124 |
Static | 24 | -1.031 | 2.951E-06 | 0.044 | 0.122 |
72 | -1.001 | 1.761E-06 | 0.026 | 0.120 | |
120 | -1.022 | 2.237E-06 | 0.035 | 0.118 | |
168 | -1.029 | 2.675E-06 | 0.040 | 0.120 | |
Dynamic | 24 | -1.011 | 2.792E-06 | 0.042 | 0.127 |
72 | -1.019 | 9.080E-07 | 0.013 | 0.104 | |
120 | -1.045 | 1.666E-06 | 0.025 | 0.124 | |
168 | -1.015 | 2.421E-06 | 0.036 | 0.122 |
Fig. 13. (a, b) Nyquist plots and corresponding electrical equivalent circuit diagrams (EEC), (c, d) Bode plots of |Z| and phase angle vs. frequency of pure Zn immersed in (a) static and (b) dynamic state Hank' solution: (a, c) static solution and (b, d) dynamic solution, (e) Nyquist plots of pure Zn at 72 h and (f) the value change of Rt. *P < 0.05.
Flow state | Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 sn) | nct | Rct (Ω cm2) | Qp (Ω-1 cm-2 sn) | ndl | Rp (Ω cm2) | W (Ω-1 cm-2 s0.5) |
---|---|---|---|---|---|---|---|---|---|
Original | 0 | 35.9 | 1.65E-5 | 0.76 | 714.7 | 1.37E-2 | |||
Static | 24 | 34.2 | 1.41E-6 | 0.87 | 1298.0 | 3.27E-6 | 0.95 | 283.2 | |
72 | 46.5 | 1.64E-6 | 0.80 | 1421.3 | 1.09E-6 | 0.99 | 726.1 | ||
120 | 38.5 | 1.17E-5 | 0.71 | 758.5 | 7.59E-6 | 0.82 | 1005.1 | ||
168 | 31.7 | 2.52E-6 | 0.86 | 915.3 | 1.68E-6 | 0.95 | 1042.1 | ||
Dynamic | 24 | 28.8 | 5.30E-6 | 0.75 | 229.5 | 6.29E-6 | 0.71 | 1402.0 | |
72 | 30.6 | 3.22E-6 | 0.86 | 440.9 | 8.86E-6 | 0.58 | 3526.1 | ||
120 | 32.6 | 3.40E-6 | 0.82 | 607.4 | 1.28E-6 | 0.96 | 1343.3 | ||
168 | 38.2 | 4.18E-6 | 0.78 | 1283.5 | 5.48E-5 | 0.61 | 732.8 |
Table 2 Equivalent electrical circuit parameters of pure Zn immersed in static or dynamic Hank' solution.
Flow state | Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 sn) | nct | Rct (Ω cm2) | Qp (Ω-1 cm-2 sn) | ndl | Rp (Ω cm2) | W (Ω-1 cm-2 s0.5) |
---|---|---|---|---|---|---|---|---|---|
Original | 0 | 35.9 | 1.65E-5 | 0.76 | 714.7 | 1.37E-2 | |||
Static | 24 | 34.2 | 1.41E-6 | 0.87 | 1298.0 | 3.27E-6 | 0.95 | 283.2 | |
72 | 46.5 | 1.64E-6 | 0.80 | 1421.3 | 1.09E-6 | 0.99 | 726.1 | ||
120 | 38.5 | 1.17E-5 | 0.71 | 758.5 | 7.59E-6 | 0.82 | 1005.1 | ||
168 | 31.7 | 2.52E-6 | 0.86 | 915.3 | 1.68E-6 | 0.95 | 1042.1 | ||
Dynamic | 24 | 28.8 | 5.30E-6 | 0.75 | 229.5 | 6.29E-6 | 0.71 | 1402.0 | |
72 | 30.6 | 3.22E-6 | 0.86 | 440.9 | 8.86E-6 | 0.58 | 3526.1 | ||
120 | 32.6 | 3.40E-6 | 0.82 | 607.4 | 1.28E-6 | 0.96 | 1343.3 | ||
168 | 38.2 | 4.18E-6 | 0.78 | 1283.5 | 5.48E-5 | 0.61 | 732.8 |
Fig. 14. Fluorescencent and SEM images of RAECs cultured under different conditions: (a, b) RAECs cultured under static condition for 24 h, (c, d) RAECs cultured under flow exposure condition for 24 h and (d) quantitative analysis of the live/dead cells. *P < 0.05 and **P < 0.01.
Fig. 15. Schematic diagrams illustrating the corrosion process and the cellular response of pure Zn under static immerison and laminar flow corrosion.
[1] | Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R. 77(2014) 1-34. |
[2] | J.L. Wang, J.K. Xu, C. Hopkins, D.H.-K. Chow, L. Qin, Adv. Sci. 7(8) (2020) 1902443. |
[3] | J. Venezuela, M.S. Dargusch, Acta Biomater. 87(2019) 1-40. |
[4] | D. Hernández-Escobar, S. Champagne, H. Yilmazer, B. Dikici, C.J. Boehlert, H. Hermawan, Acta Biomater. 97(2019) 1-22. |
[5] | Y. Liu, Y. Zheng, X.H. Chen, J.A. Yang, H. Pan, D. Chen, L. Wang, J. Zhang, D. Zhu, S. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han, S. Guan , Adv. Funct. Mater. 29(2019) 1805402. |
[6] | S. Lin, Q. Wang, X. Yan, X. Ran, L. Wang, J.G. Zhou, T. Hu, G. Wang, Mater. Lett. 234(2019) 294-297. |
[7] | J. Cheng, B. Liu, Y.H. Wu, Y.F. Zheng, J. Mater. Sci. Technol. 29 (7) (2013) 619-627. |
[8] | H.F. Li, Z.Z. Shi, L.N. Wang. J. Mater. Sci. Technol. 46(2020) 136-138. |
[9] | M. W ˛atroba, W. Bednarczyk, J. Kawałko, K. Mech, M. Marciszko, G. Boelter, M. Banzhaf, P. Bała, Mater. Des. 183(2019) 108154. |
[10] | Y.X. Yin, C. Zhou, Y.P. Shi, Z.Z. Shi, T.H. Lu, Y. Hao, C.H. Liu, X. Wang, H.J. Zhang, L.N. Wang, Mater. Sci. Eng. C Mater.Biol. Appl. 104(2019) 109896. |
[11] | E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71(2018) 1-23. |
[12] | P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25 (18) (2013) 2577-2582. |
[13] | A.J. Drelich, S. Zhao, R.J. Guillory, J.W. Drelich, J. Goldman, Acta Biomater. 58(2017) 539-549. |
[14] | J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer, F. Feyerabend, Bioact. Mater. 3(2) (2018) 174-185. |
[15] | K. Törne, A. Ornberg, J. Weissenrieder, Acta Biomater. 48(2017) 541-550. |
[16] | L. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, L.N. Wang, Corros. Sci. 153(2019) 341-356. |
[17] | X. Liu, H. Yang, P. Xiong, W.T. Li, H.H. Huang, Y.F. Zheng, Corros. Sci. 157(2019) 205-219. |
[18] | C. Xiao, L. Wang, Y. Ren, S. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, G. Qin, J. Mater. Sci. Technol. 34 (9)(2018) 1618-1627. |
[19] | B. Jia, H. Yang, Y. Han, Z. Zhang, X. Qu, Y. Zhuang, Q. Wu, Y. Zheng, K. Dai, Acta Biomater. 108(2020) 358-372. |
[20] | M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater. Sci. 89(2017) 92-193. |
[21] | L. Chen, J. Li, S. Wang, S. Zhu, C. Zhu, B. Zheng, G. Yang, S. Guan, J. Mater. Res. 33(23) (2018) 4123-4133. |
[22] | F. Robotti, D. Franco, L. Bänninger, J. Wyler, C.T. Starck, V. Falk, D. Poulikakos, A. Ferrari, Biomaterials 35(30) (2014) 8479-8486. |
[23] | J. Wang, Y. Jang, G. Wan, V. Giridharan, G.L. Song, Z. Xu, Y. Koo, P. Qi, J. Sankar, N. Huang, Y. Yun, Corros. Sci. 104(2016) 277-289. |
[24] | D. Liu, S. Hu, X. Yin, J. Liu, Z. Jia, Q. Li, Mater. Sci. Eng. C 84 (2018) 263-270. |
[25] | J. Wang, V. Giridharan, V. Shanov, Z. Xu, B. Collins, L. White, Y. Jang, J. Sankar, N. Huang, Y. Yun, Acta Biomater. 10(2014) 5213-5223. |
[26] | Y. Chen, S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang, Mater. Lett. 64(18) (2010) 1996-1999. |
[27] | N. Li, C. Guo, Y.H. Wu, Y.F. Zheng, L.Q. Ruan, Corros. Eng. Sci. Technol. 47 (5) (2012) 346-351. |
[28] | J. Levesque, H. Hermawan, D. Dube, D. Mantovani, Acta Biomater. 4(2) (2008) 284-295. |
[29] | X.N. Gu, Y. Lu, F. Wang, W. Lin, P. Li, Y. Fan, Bioact. Mater. 3(4) (2018) 448-454. |
[30] | C. Zhou, H.F. Li, Y.X. Yin, Z.Z. Shi, T. Li, X.Y. Feng, J.W. Zhang, C.X. Song, X.S. Cui, K.L. Xu, Y.W. Zhao, W.B. Hou, S.T. Lu, G. Liu, M.Q. Li, J.Y. Ma, E. Toft, A.A. Volin- sky, M. Wan, X.J. Yao, C.B. Wang, K. Yao, S.K. Xu, H. Lu, S.F. Chang, J.B. Ge, L.N. Wang, H.J. Zhang, Acta Biomater. 97(2019) 657-670. |
[31] | P.K. Bowen, R.J. Guillory, E.R. Shearier, J.M. Seitz, J. Drelich, M. Bocks, F. Zhao, J. Goldman, Mater. Sci. Eng. C 56(2015) 467-472. |
[32] | Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 2004. |
[33] | ASTM-G1-03, ASTM International, West Conshohocken, PA, 2004. |
[34] | X. Gong, H. Liu, X. Ding, M. Liu, X. Li, L. Zheng, X. Jia, G. Zhou, Y. Zou, J. Li, X. Huang, Y. Fan, Biomaterials 35 (2014) 4782-4791. |
[35] | P.A. Doriot, P.A. Dorsaz, L. Dorsaz, E. De Benedetti, P. Chatelain, P. Delafontaine, Coronary. Artery. Dis. 11(6)(2000) 495-502. |
[36] | Annual Book of ASTM Standards, ASTM, Philadelphia, PA, USA, 2010. |
[37] | X. Gong, Z. Liang, Y. Yang, H. Liu, J. Ji, Y. Fan. Regener. Biomater.(2020) 1-11. |
[38] | L. Liu, Y. Meng, C. Dong, Y. Yan, A.A. Volinsky, L.N. Wang, J. Mater. Sci. Technol. 34(2018) 2271-2282. |
[39] | R.C. Zeng, X.T. Li, L.J. Liu, S.Q. Li, F. Zhang, J. Mater. Sci. Technol. 32 (2016) 437-444. |
[40] | J. Winiarski, W. Tylus, A. Lutz, I. De Graeve, B. Szczygieł, Corros. Sci. 138(2018) 130-141. |
[41] | M. Bitenc, M. Marinšek, Z. Crnjak Orel. J. Eur. Ceram. Soc. 28(2008) 2915-2921. |
[42] | A. Ali, F. Iqbal, A. Ahmad, F. Ikram, A. Nawaz, A.A. Chaudhry, S.A. Siddiqi, I. Rehman, Surf. Coat. Technol. 357(2019) 716-727. |
[43] | A. Anwar, S. Akbar, A. Sadiqa, M. Kazmi, Inorg. Chim. Acta 453 (2016) 16-22. |
[44] | A. ´Slósarczyk, Z. Paszkiewicz, C. Paluszkiewicz. J. Mol. Struct. 744-747(2005) 657-661. |
[45] | G.F. Mohsin, F.-.J. Schmitt, C. Kanzler, J.Dirk D. Epping, S. Flemig, A. Horne-mann, Food Chem. 245(2018) 761-767. |
[46] | E.C. Onyiriuka, J. Non-Cryst. Solids 163 (3) (1993) 268-273. |
[47] | S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman, M. Marvibaigi, J. Alloys. Compd. 655(2016) 266-280. |
[48] | A.P. Md Saad, R.A. Abdul Rahim, M.N. Harun, H. Basri, J. Abdullah, M.R. Abdul Kadir, A. Syahrom , Mater. Des. 122(2017) 268-279. |
[49] | B. Ramezanzadeh, H. Vakili, R. Amini, Appl. Surf. Sci. 327(2015) 174-181. |
[50] | G. Ballerini, K. Ogle, M.G. Barthés-Labrousse, Appl. Surf. Sci. 253 (16) (2007) 6860-6 867. |
[51] | L.S. Dake, D.R. Baer, J.M. Zachara, Surf. Interface Anal. 14 (1-2) (1989) 71-75. |
[52] | X. Liu, Y. Cheng, Z. Guan, Y. Zheng, Corros. Sci. 170(2020) 108661. |
[53] | X. Liu, H. Yang, Y. Liu, P. Xiong, H. Guo, H.-.H. Huang, Y. Zheng, JOM 71 (4) (2019) 1414-1425. |
[54] | X. Liu, J. Sun, Y. Yang, Z. Pu, Y. Zheng, Mater. Lett. 161(2015) 53-56. |
[55] | R.C. Zeng, Y. Hu, S.K. Guan, H.Z. Cui, E.H. Han, Corros. Sci. 86(2014) 171-182. |
[56] | J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, H.M. Sui. Acta Metall. Sin. (Engl. Lett.) 31(8) (2018) 865-872. |
[57] | W. Yan, Y.-.J. Lian, Z.-.Y. Zhang, M.-.Q. Zeng, Z.-.Q. Zhang, Z.-.Z. Yin, L.-.Y. Cui, R.-.C. Zeng, Bioact. Mater. 5(2) (2020) 318-333. |
[58] | Y. Chen, W. Zhang, M.F. Maitz, M. Chen, H. Zhang, J. Mao, Y. Zhao, N. Huang, G. Wan, Corros. Sci. 111(2016) 541-555. |
[59] | H. Liu, X. Gong, X. Jing, X. Ding, Y. Yao, Y. Huang, Y. Fan, J. Tissue Eng. Regen Med. 11(2017) 2965-2978. |
[60] | S.K. Yazdani, B.W. Tillman, J.L. Berry, S. Soker, R.L. Geary, J. Vasc. Surg. 51 (1) (2010) 174-183. |
[61] | H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W. Li, W. Yuan, H. Guo, H. Li, G. Yang, D. Kong, D. Zhu, K. Takashima, L. Ruan, J. Nie, X. Li, Y. Zheng, Biomaterials 145(2017) 92-105. |
[62] | P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, J.W. Drelich, Adv. Healthc. Mater. 5(10) (2016) 1121-1140. |
[63] | Y. Su, I. Cockerill, Y. Wang, Y.X. Qin, L. Chang, Y. Zheng, D. Zhu, Trends. Biotech- nol. 37 (4) (2019) 428-441. |
[64] | D. Zhu, I. Cockerill, Y. Su, Z. Zhang, J. Fu, K.W. Lee, J. Ma, C. Okpokwasili, L. Tang, Y. Zheng, Y.X. Qin, Y. Wang, ACS Appl. Mater. Interfaces 11 (2019) 6 809-6 819. |
[65] | Y. Li, P. Pavanram, J. Zhou, K. Lietaert, P. Taheri, W. Li, H. San, M.A. Leeflang, J.M.C. Mol, H. Jahr, A.A. Zadpoor, Acta Biomater. 101(2020) 609-623. |
[66] | L.Y. Xu, Y.F. Cheng, Corros. Sci. 51 (10) (2009) 2330-2335. |
[67] | J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Romer, F. Feyerabend, Bioact Mater. 3 (2) (2018) 174-185. |
[68] | Y. Xu, M.Y. Tan, Corros. Sci. 151(2019) 163-174. |
[69] | K.D. Efird, in: Flow Effects on Corrosion, Uhlig’s Corrosion Handbook, 2011, pp. 203-213. |
[70] | K. Chen, Y. Lu, H. Tang, Y. Gao, F. Zhao, X. Gu, Y. Fan, Acta Biomater. 113(2020) 627-645. |
[71] | G. Katarivas Levy, A. Kafri, Y. Ventura, A. Leon, R. Vago, J. Goldman, E. Aghion, Mater. Lett. 248(2019) 130-133. |
[72] | J. Teichmann, A. Morgenstern, J. Seebach, H.-.J. Schnittler, C. Werner, T. Pompe, Biomaterials 33 (7) (2012) 1959-1969. |
[73] | Z. Othman, B. Cillero Pastor, S. van Rijt, P. Habibovic, Biomaterials 167 (2018) 191-204. |
[74] | J. Ma, N. Zhao, D. Zhu, A.C.S. Biomater, Sci. Eng. 1 (11) (2015) 1174-1182. |
[75] | E.R. Shearier, P.K. Bowen, W. He, A. Drelich, J. Drelich, J. Goldman, F. Zhao, ACS Biomater. Sci. Eng. 2(4) (2016) 634-642. |
[76] | P. Li, C. Schille, E. Schweizer, E. Kimmerle-Müller, F. Rupp, A. Heiss, C. Legner, U.E. Klotz, J. Geis-Gerstorfer, L. Scheideler, Acta Biomater. 98(2019) 235-245. |
[77] | S. Jana, Acta Biomater. 99(2019) 53-71. |
[78] | W. Lin, H. Zhang, W. Zhang, H. Qi, G. Zhang, J. Qian, X. Li, L. Qin, H. Li, X. Wang, H. Qiu, X. Shi, W. Zheng, D. Zhang, R. Gao, J. Ding, Bioact. Mater. 6 (4) (2021) 1028-1039. |
[1] | Shiyang Liu, Damon Kent, Hongyi Zhan, Nghiem Doan, Chang Wang, Sen Yu, Matthew Dargusch, Gui Wang. Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression [J]. J. Mater. Sci. Technol., 2021, 86(0): 237-250. |
[2] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[3] | Yang Li, Ziyang Luo, Shunfei Liang, Huizhen Qin, Xun Zhao, Lingyun Chen, Huayu Wang, Shaowei Chen. Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 199-208. |
[4] | Hima Bindu Ruttala, Thiruganesh Ramasamy, Raghu Ram Teja Ruttala, Tuan Hiep Tran, Jee-Heon Jeong, Han-Gon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments [J]. J. Mater. Sci. Technol., 2021, 86(0): 139-150. |
[5] | Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response [J]. J. Mater. Sci. Technol., 2021, 78(0): 110-120. |
[6] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[7] | Tian Wan, Kangjie Chu, Ju Fang, Chuanxin Zhong, Yiwen Zhang, Xiang Ge, Yonghui Ding, Fuzeng Ren. A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants [J]. J. Mater. Sci. Technol., 2021, 80(0): 266-278. |
[8] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[9] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[10] | Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. J. Mater. Sci. Technol., 2020, 49(0): 1-6. |
[11] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[12] | Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration [J]. J. Mater. Sci. Technol., 2020, 44(0): 160-170. |
[13] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[14] | Shi Jin, Dan Zhang, Xiaopeng Lu, Yang Zhang, Lili Tan, Ying Liu, Qiang Wang. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 190-201. |
[15] | R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint [J]. J. Mater. Sci. Technol., 2020, 42(0): 220-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||