J. Mater. Sci. Technol. ›› 2021, Vol. 91: 148-159.DOI: 10.1016/j.jmst.2021.02.041
• Research Article • Previous Articles Next Articles
Received:
2020-12-07
Revised:
2021-01-19
Accepted:
2021-02-03
Published:
2021-11-20
Online:
2021-11-20
Contact:
Jae SuYu
About author:
*E-mail address: jsyu@khu.ac.kr (J.S. Yu).Yongbin Hua, Jae SuYu. Double-excited states of charge transfer band and 4f-4f in single-phase K3Gd(VO4)2:Tb3+/Sm3+ phosphors with superior sensing sensitivity for potential luminescent thermometers[J]. J. Mater. Sci. Technol., 2021, 91: 148-159.
Fig. 1. (a) XRD patterns and (b) FT-IR spectra of the KGV, KGV:0.2Tb3+, and KGV:0.2Tb3+/0.05Sm3+ phosphors. (c) Crystal structure of the KGV host lattice.
Fig. 2. (a) XPS spectra and (b, c) high-resolution XPS spectra of the obtained samples. EDS spectra and elemental mapping images of the (d, e) KGV:0.2Tb3+ and (f, g) KGV:0.2Tb3+/0.05Sm3+ phosphors.
Fig. 4. (a) PLE spectra, (b) zoomed PLE spectrum, and (c) PLE intensity of the KGV:Tb3+ phosphor under the 543 nm of emission wavelength. PL emission spectra, PL emission intensity, and log(x) vs. log(I/x) of KGV:xTb3+ phosphor at the excitation wavelengths of (d-f) CTB (317 nm) and (g-i) 4f-4f (478 nm).
Fig. 5. (a) PLE spectrum, (b) PL emission spectra, and (c) PL emission intensity of the KGV:0.1Sm3+ phosphor. (d) PLE spectra of the KGV:0.1Sm3+ and KGV:0.2Tb3+ phosphors.
Fig. 6. PL emission spectra, PL intensity, and ET efficiency of the KGV:0.2Tb3+/ySm3+ phosphors monitored at the excitation wavelengths of (a-c) CTB (317 nm) and (d-f) 4f-4f (478 nm).
Fig. 10. Dependence of (a, c) FIR value and (b, d) sensing sensitivity of the KGV:0.2Tb3+/0.05Sm3+ phosphor with the double-excited states of CTB (317 nm) and 4f-4f (478 nm) as a function of temperature.
Fig. 12. FIR and Sa values of the KGV:0.2Tb3+/0.01Sm3+ phosphor measured at the excitation wavelengths of (a) CTB (317 nm) and (b) 4f-4f (478 nm). (c) Relative sensor sensitivity values of the KGV:0.2Tb3+/0.01Sm3+ and KGV:0.2Tb3+/0.05Sm3+ phosphors pumped by the double-excited states. (d) Temperature resolution in the range of 303-423 K.
Phosphors | Temperature (K) | λex (nm) | Sa (K-1) | Sr (K-1) | Ref. |
---|---|---|---|---|---|
NLM:Sm3+/Tb3+ | 303-443 | 380 | 0.02 | 0.68% | [ |
GdNbO4:Bi3+/Eu3+ | 303-523 | 308 | 0.0367 | 3.81% | [ |
LaF3:Er3+/Yb3+ | 15-105 | 988 | 0.0768 | 6.609% | [ |
Y2Ti2O7:Pr3+ | 289-573 | 343 | 0.0983 | 5.25% | [ |
CaBaZn2Ga2O7:Bi3+ | 298-473 | 330 | 0.154 | 1.453% | [ |
LaVO4:Tb3+/Pr3+ | 303-443 | 322 | 0.193 | 5.30% | [ |
La2Ti3O9:Tb3+/Pr3+ | 303-423 | 340 | 0.156 | 3.47% | [ |
Ca2YZr2Al3O12:Bi3+/Eu3+ | 297-573 | 278 | 0.00826 | 0.664% | [ |
Ca14Al10Zn6O35:Bi3+/Sm3+ | 303-523 | 340 | 0.0038 | - | [ |
LiTaO3:Er3+ | 100-500 | 980 | 0.00334 | - | [ |
LaGdAlO3:Eu2+/Eu3+ | 303-473 | 315 | 0.084 | 3.233% | [ |
SrGdLiTeO6:Mn4+/Eu3+ | 300-550 | 302 | 0.0946 | 4.9% | [ |
KGV:Tb3+/Sm3+ | 303-383 | CTB (317 nm) | 0.568 | 11.24% | This work |
303-423 | 4f-4f (478 nm) | 0.295 | 2.98% | This work |
Table 1 Comparative sensing properties of some luminescent materials.
Phosphors | Temperature (K) | λex (nm) | Sa (K-1) | Sr (K-1) | Ref. |
---|---|---|---|---|---|
NLM:Sm3+/Tb3+ | 303-443 | 380 | 0.02 | 0.68% | [ |
GdNbO4:Bi3+/Eu3+ | 303-523 | 308 | 0.0367 | 3.81% | [ |
LaF3:Er3+/Yb3+ | 15-105 | 988 | 0.0768 | 6.609% | [ |
Y2Ti2O7:Pr3+ | 289-573 | 343 | 0.0983 | 5.25% | [ |
CaBaZn2Ga2O7:Bi3+ | 298-473 | 330 | 0.154 | 1.453% | [ |
LaVO4:Tb3+/Pr3+ | 303-443 | 322 | 0.193 | 5.30% | [ |
La2Ti3O9:Tb3+/Pr3+ | 303-423 | 340 | 0.156 | 3.47% | [ |
Ca2YZr2Al3O12:Bi3+/Eu3+ | 297-573 | 278 | 0.00826 | 0.664% | [ |
Ca14Al10Zn6O35:Bi3+/Sm3+ | 303-523 | 340 | 0.0038 | - | [ |
LiTaO3:Er3+ | 100-500 | 980 | 0.00334 | - | [ |
LaGdAlO3:Eu2+/Eu3+ | 303-473 | 315 | 0.084 | 3.233% | [ |
SrGdLiTeO6:Mn4+/Eu3+ | 300-550 | 302 | 0.0946 | 4.9% | [ |
KGV:Tb3+/Sm3+ | 303-383 | CTB (317 nm) | 0.568 | 11.24% | This work |
303-423 | 4f-4f (478 nm) | 0.295 | 2.98% | This work |
[1] | C. Cheng, L. Ning, X. Ke, M.S. Molokeev, Z. Wang, G. Zhou, Y.C. Chuang, Z. Xia. Adv. Opt. Mater. 8 (2020)2070008. |
[2] | S. Wang, B. Devakumar, Q. Sun, J. Liang, L. Sun, X. Huang, J. Mater. Chem. C 8(2020) 4408-4420. |
[3] | P. Sun, P. Hu, Y. Liu, S. Liu, R. Dong, J. Jiang, H. Jiang, J. Mater. Chem. C 8(2020) 1405-1412. |
[4] | L. Zhang, L. Dong, B. Shao, S. Zhao, H. You, Dalton Trans 48 (2019) 11460-11468. |
[5] | Guo H, Song X, W. Lei, C. He, W. You, Q. lin, S. Zhou, X. Chen, Z. Chen, Angew. Chem. In. Ed. 58(2019) 12195-12199. |
[6] | Y. Hua, J.S. Yu. J. Alloys Compd. 811(2019) 152050. |
[7] | Y. Hua, S.K. Hussain, J.S. Yu, Ceram. Int. 45(2019) 18604-18613. |
[8] | L. Xu, J. Liu, L. Pei, Y. Xu, Z. Xia, J. Mater. Chem. C 7(2019) 6112-6119. |
[9] | H. Zhang, J. Ye, X. Wang, S. Zhao, R. Lei, L. Huang, S. Xu. J. Mater. Chem. C. 7(2019) 15269-15275. |
[10] | Y. Hua, P. Du, J.S. Yu, Mater. Res. Bull. 107(2018) 314-320. |
[11] | W. Ran, H.M. Noh, S.H. Park, B.R. Lee, J.H. Kim, J.H. Jeong, J. Shi, Dalton Trans 48 (2019) 4405-4412. |
[12] | H. Lu, J. Yang, D. Huang, Q. Zou, M. Yang, X. Zhang, Y. Wang, H. Zhu. J. Lumin. 206(2019) 613-617. |
[13] | Y. Wu, S. Xu, F. Lai, B. Liu, J. Huang, X. Ye, W. You. J. Alloys Compd. 804(2019) 4 86-4 93. |
[14] | H. Liu, C. Zuo, Y. Liu, G. Gao, D. Liu, T. Wang, T. Liu, Y. Zhang. J. Lumin. 207(2019) 93-97. |
[15] | W. Ran, H.M. Noh, S.H. Park, B.R. Lee, J.H. Kim, J.H. Jeong, J. Shi, Mater. Res. Bull. 117(2019) 63-71. |
[16] | L. Li, X. Tang, Z. Wu, Y. Zheng, S. Jiang, X. Tang, G. Xiang, X. Zhou. J. Alloys Compd. 780(2019) 266-275. |
[17] | Y. Wang, X. Liu, Y. Li, L. Jing. J. Alloys Compd. 653(2015) 315-320. |
[18] | C. Jin, J. Zhang, W. Lu, Y. Fei. J. Lumin. 214(2019) 116581. |
[19] | Y. Hua, S.K. Hussain, J.S. Yu, New J. Chem. 43(2019) 10645-10657. |
[20] | J. Wang, X. Peng, D. Cheng, Z. Zheng, H. Guo, J. Rare Earths 39 (2021) 284-290. |
[21] | Y. Fu, Z. Zhang, F. Zhang, C. Li, B. Liu, G. Li. Opt. Mater. 99(2020) 109519. |
[22] | D. Chen, L. Zhang, Y. Liang, W. Wang, S. Yan, J. Bi, K. Sun, CrystEngComm 22(2020) 4438-4448. |
[23] | Y. Hua, W. Ran, J.S. Yu, Chem. Eng. J. 406(2021) 127154. |
[24] | J. Xue, H.M. Noh, B.C. Choi, S.H. Park, J.H. Kim, J.H. Jeong, P. Du, Chem. Eng. J. 382(2020) 122861. |
[25] | Y. Wang, X. Liu, Y. Li, L. Jing. J. Alloys Compd. 653(2015) 315-320. |
[26] | Y. Hua, J.S. Yu. J. Alloys Compd. 820(2020) 153162. |
[27] | G. Annadurai, B. Li, B. Devakumar, H. Guo, L. Sun, X. Huang. J. Lumin. 208(2019) 75-81. |
[28] | L. Yang, X. Mi, H. Zhang, X. Zhang, Z. Bai, J. Lin. J. Alloys Compd. 787(2019) 815-822. |
[29] | C. Ji, Z. Huang, X. Tian, W. Xie, J. Wen, H. He, C. Zhou, T. Zeng, Dyes Pigm 160(2019) 772-777. |
[30] | S.K. Sharma, S. Som, R. Jain, A.K. Kunti. J. Lumin. 159(2015) 317-3234. |
[31] | C. Dou, Y. Feng, H. Kong, F. Zheng, S. Ullah, J. Yan, S. Sun, D. Zhong, J. Mater. Sci. Mater. Electron. 31(2020) 3934-3943. |
[32] | R. Cao, Y. Ran, X. Lv, L. Xu, H. Wan, Q. Hu, T. Chen, C. Cao. J. Lumin. 214(2019) 116549. |
[33] | Y. Yan, Y. Tan, D. Li, F. Luan, D. Guo. J. Lumin. 211(2019) 209-217. |
[34] | D. Liu, P. Dang, X. Yun, G. Li, H. Lian, J. Lin, J. Mater. Chem. C 7(2019) 13536-13547. |
[35] | X. Zhang, H. Zou, C. Xu, Z. An, R. Dong, K. Zheng, Y. Sheng, Y. Song, Opt. Mater. 89(2019) 512-520. |
[36] | X. Huang, S. Wang, J. Liang, B. Devakumar. J. Lumin. 226(2020) 117408. |
[37] | L. Li, G. Tian, W. Chang, Y. Yan, F. Ling, S. Jiang, G. Xiang, X. Zhou. J. Alloys Compd. 832(2020) 154905. |
[38] | Y. Hua, J.S. Yu. J. Mater. Sci. Technol. 54(2020) 230-239. |
[39] | J. Wang, M. Song, H.J. Seo. J. Lumin. 222(2020) 117185. |
[40] | Y. Lin, L. Zhao, B. Jiang, J. Mao, F. Chi, P. Wang, C. Xie, X. Wei, Y. Chen, M. Yin, Opt. Mater. 95(2019) 109199. |
[41] | Y. Ding, N. Guo, X. Lv, H. Zhou, L. Wang, R. Ouyang, Y. Miao, B. Shao. J. Am. Ceram. Soc. 102(2019) 7436-7447. |
[42] | A.M. Kaczmarek, M.K. Kaczmarek, R.V. Deum, Nanoscale 11(2019) 833-837. |
[43] | R. Lei, X. Luo, Z. Yuan, H. Wang, F. Huang, D. Deng, S. Xu. J. Lumin. 205(2019) 4 40-4 45. |
[44] | D. Liu, X. Yun, P. Dang, H. Lian, M. Shang, G. Li, J. Lin, Chem. Mater. 32(2020) 3065-3077. |
[45] | Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, Y. Wang, Adv. Funct. Mater. 26(2016) 3139-3145. |
[46] | Z. Zheng, J. Zhang, X. Liu, R. Wei, F. Hu, H. Guo, Ceram. Int. 46(2020) 6154-6159. |
[47] | Y. Ding, N. Guo, M. Zhu, W. Lv, R. Ouyang, Y. Miao, Shao B, Mater. Res. Bull. 129(2020) 110869. |
[48] | X. Yang, S. Lin, D. Ma, S. Long, Y. Zhu, H. Li, B. Wang, Ceram. Int. 46(2020) 1178-1182. |
[49] | C. Li, B. Chen, D. Deng, H. Yu, H. Li, C. Shen, L. Wang, S. Xu. J. Lumin. 221(2020) 117036. |
[50] | L. Li, G. Tian, Y. Deng, Y. Jie, Y. Wang, Z. Cao, F. Ling, Y. Li, S. Jiang, G. Xiang, X. Zhou, Opt. Express 28 (2020) 33747-33757. |
[51] | F. Mo, X. Zhang, Z. Sun, Z. Zhu, Z. Guo, Z. Wu, Ceram. Int. 45(2019) 12319-12324. |
[52] | Q. Zhang, Y. Xu, Z. Wang, X. Zhang, Z. Xia, J. Mater. Chem. C 6(2018) 9778-9785. |
[1] | Yongbin Hua, Jae Su Yu. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination [J]. J. Mater. Sci. Technol., 2020, 54(0): 230-239. |
[2] | Shijie Xu, Ying Huang, Zhicheng Su, Rongxin Wang, Jianrong Dong, Deliang Zhu. Storage and transfer of optical excitation energy in GaInP epilayer: Photoluminescence signatures [J]. J. Mater. Sci. Technol., 2019, 35(7): 1364-1367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||