J. Mater. Sci. Technol. ›› 2021, Vol. 90: 58-65.DOI: 10.1016/j.jmst.2021.02.028
• Research Article • Previous Articles Next Articles
Zhonghuai Wua, Liangchi Zhangb,c,*()
Received:
2020-09-14
Revised:
2021-01-17
Accepted:
2021-02-06
Published:
2021-11-05
Online:
2021-11-05
Contact:
Liangchi Zhang
About author:
* E-mail address: zhanglc@sustech.edu.cn (L. Zhang).Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide[J]. J. Mater. Sci. Technol., 2021, 90: 58-65.
Fig. 2. The microstructure below the indentation mark of the 6H-SiC coated with an amorphous film. (a) A bright-field and (b) a dark-field low-magnification STEM images. A high-magnification STEM image taken from (c) yellow border region and (d) red border region of (a). The reduced fast Fourier transformation (FFT) was conducted in the two selected regions of (c) marked by red and yellow dash line frames, as shown in the inserts.
Fig. 3. Indentation load-depth curve for the monocrystalline 6H-SiC and the surface-modified 6H-SiC workpiece with a maximum indentation depth of 5.4 nm.
Fig. 10. Overall deformation morphologies of (a) monocrystalline 6H-SiC and (b) the 6H-SiC substrate; cross-section deformation morphologies of (c) monocrystalline 6H-SiC and (d) the 6H-SiC substrate.
[1] |
S. Goel, J. Phys. D: Appl. Phys. 47 (2014) 243001.
DOI URL |
[2] | C. Hall, M. Tricard, H. Murakoshi, Y. Yamamoto, K. Kuriyama, H. Yoko, in: Proceedings of SPIE-The International Society for Optical Engneering, Optical Ma- terials and Structures Technologies II, 2005, p. 58680V. |
[3] |
C.E. Weitzel, J.W. Palmour, C.H. Carter, K. Moore, K. Nordquist, S. Allen, C. Thero, M. Bhatnagar, IEEE Trans. Electron. Devices 43 (1996) 1732-1741.
DOI URL |
[4] | S. Suyama, Y. Itoh, Adv. Sci. Technol. 63 (2011) 374-382. |
[5] | S. Suyama, Y. Itoh, K. Tsuno, K. Ohno, in: Proceedings of SPIE-The International Society for Optical Engneering, Optical Materials and Structures Technologies II, 2005, p. 58680E. |
[6] |
D.C. Walther, J. Ahn, Prog. Energy Combust. Sci. 37 (2011) 583-610.
DOI URL |
[7] |
Z. Wu, W. Liu, L.C. Zhang, J. Am. Ceram. Soc. 101 (2018) 3585-3596.
DOI URL |
[8] | R. Cheung, World Scientific, 2006. |
[9] | M.B. Wijesundara, R.G. Azevedo, in: SiC Materials and Processing Technol- ogy, Silicon Carbide Microsystems for Harsh Environments, Springer, 2011, pp. 33-95. |
[10] |
H. Zhu, L.A. Tessaroto, R. Sabia, V.A. Greenhut, M. Smith, D.E. Niesz, Appl. Surf. Sci. 236 (2004) 120-130.
DOI URL |
[11] |
G.J. Pietsch, Y.J. Chabal, G.S. Higashi, Surf. Sci.331- 333 (1995) 395-401.
DOI URL |
[12] | B. Hornetz, H.J. Michel, J. Halbritter, J.Vac. Sci. Technol. A 13 (1995) 767-771. |
[13] | J. Wang, C. Lu, Q. Wang, P. Xiao, F. Ke, Y. Bai, Y. Shen, X. Liao, H. Gao, Nan- otechnology 23 (2011) 025703. |
[14] |
J. Wang, C. Lu, Q. Wang, P. Xiao, F.J. Ke, Y.L. Bai, Y.G. Shen, X.Z. Liao, H.J. Gao, EPL 95 (2011) 63003.
DOI URL |
[15] |
C.A. Schuh, J. Mason, A. Lund, Nat. Mater. 4 (2005) 617-621.
PMID |
[16] | C.A. Schuh, Mater. Today 9 (2006) 32-40. |
[17] |
M. Matsumoto, H. Huang, H. Harada, K. Kakimoto, J. Yan, J. Phys. D: Appl. Phys. 50 (2017) 265303.
DOI URL |
[18] |
A. Nawaz, W.G. Mao, C. Lu, Y.G. Shen, J. Alloys Compd. 708 (2017) 1046-1053.
DOI URL |
[19] |
A. Datye, L. Li, W. Zhang, Y. Wei, Y. Gao, G.M. Pharr, J. Appl. Mech. 83 (2016) 091003.
DOI URL |
[20] |
Z. Wu, W. Liu, L.C. Zhang, S. Lim, Acta Mater 182 (2020) 60-67.
DOI URL |
[21] |
C. Li, X. Li, Y. Wu, F. Zhang, H. Huang, Int. J. Mach. Tools Manuf. 143 (2019) 23-37.
DOI URL |
[22] | C. Li, X. Li, S. Huang, L. Li, F. Zhang, J. Manuf, Processes 61 (2021) 417-427. |
[23] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[24] |
A. Nakano, R.K. Kalia, P. Vashishta, J. Non-Cryst. Solids 171 (1994) 157-163.
DOI URL |
[25] |
L.C. Zhang, H. Tanaka, JSME Int. J., A 42 (1999) 546-559.
DOI URL |
[26] |
L.C. Zhang, H. Tanaka, Tribol. Int. 31 (1998) 425-433.
DOI URL |
[27] | L.C. Zhang, UK:, 2001. |
[28] |
Z. Wu, W. Liu, L.C. Zhang, Comput. Mater. Sci. 137 (2017) 282-288.
DOI URL |
[29] |
P. Vashishta, R.K. Kalia, A. Nakano, J.P. Rino, J. Appl. Phys. 101 (2007) 103515.
DOI URL |
[30] |
S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 39 (2007) 334-339.
DOI URL |
[31] |
J. Tersoff, Phys. Rev. B 39 (1989) 5566.
DOI URL |
[32] |
J. Chen, J. Shi, Z. Chen, M. Zhang, W. Peng, L. Fang, K. Sun, J. Han, J. Mater. Sci. 54 (2019) 3096-3110.
DOI URL |
[33] |
I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, Acta Mater 53 (2005) 4795-4800.
DOI URL |
[34] |
D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55 (2002) 495-533.
DOI URL |
[35] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2009) 015012.
DOI URL |
[36] |
E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, H. Jónsson, Comput. Phys. Commun. 205 (2016) 13-21.
DOI URL |
[37] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
[38] | T. Kimoto, J.A. Cooper, John Wiley & Sons, 2014. |
[39] |
H. Li, J.J. Vlassak, J. Mater. Res. 24 (2009) 1114-1126.
DOI URL |
[40] |
C.J. Shih, M.A. Meyers, V.F. Nesterenko, S.J. Chen, Acta Mater 48 (2000) 2399-2420.
DOI URL |
[41] |
R. Mozzi, B. Warren, J. Appl. Crystallogr. 2 (1969) 164-172.
DOI URL |
[42] |
J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. B 52 (1995) 12690.
PMID |
[43] |
A.S. Clarke, H. Jónsson, Phys. Rev. E 47 (1993) 3975-3984.
PMID |
[44] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Cambridge Uni- versity Press Cambridge, 2009. |
[1] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[4] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[5] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
[6] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[7] | Yujie Qiang, Hao Li, Xijian Lan. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52(0): 63-71. |
[8] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[9] | T. Sapanathan, N. Jimenez-Mena, I. Sabirov, M.A. Monclús, J.M. Molina-Aldareguía, P. Xia, L. Zhao, A. Simar. A new physical simulation tool to predict the interface of dissimilar aluminum to steel welds performed by friction melt bonding [J]. J. Mater. Sci. Technol., 2019, 35(9): 2048-2057. |
[10] | Shao-Ping Wang, Jian Xu. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation [J]. J. Mater. Sci. Technol., 2019, 35(5): 812-816. |
[11] | Hui Guo, Suode Zhang, Wenhai Sun, Jianqiang Wang. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings [J]. J. Mater. Sci. Technol., 2019, 35(5): 865-874. |
[12] | L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 782-787. |
[13] | Guo Hui, Jiang Chuanbin, Yang Baijun, Wang Jianqiang. Deformation behavior of Al-rich metallic glasses under nanoindentation [J]. J. Mater. Sci. Technol., 2017, 33(11): 1272-1277. |
[14] | Abdur-Rasheed Alao, Ling Yin. Assessment of Elasticity, Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia Using Nanoindentation Techniques [J]. J. Mater. Sci. Technol., 2016, 32(5): 402-410. |
[15] | Je Jo Won,Ahn Hee-Jun,Hyoung Kim Jong,Kwon Dongil. Fracture Characteristics of Frit Bonding through In-Situ Nano-Indentation Testing [J]. J. Mater. Sci. Technol., 2016, 32(11): 1204-1210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||