J. Mater. Sci. Technol. ›› 2021, Vol. 90: 45-57.DOI: 10.1016/j.jmst.2021.03.006
• Research Article • Previous Articles Next Articles
Chuan Guoa,b,c, Yang Zhoua,b, Xinggang Lib,d, Xiaogang Hua,b, Zhen Xua,b, Enjie Donga,b, Qiang Zhua,b,*(), R. Mark Wardc,*(
)
Received:
2020-10-29
Revised:
2021-03-22
Accepted:
2021-03-25
Published:
2021-11-05
Online:
2021-11-05
Contact:
Qiang Zhu,R. Mark Ward
About author:
R.M.Ward@bham.ac.uk (R. Mark Ward).Chuan Guo, Yang Zhou, Xinggang Li, Xiaogang Hu, Zhen Xu, Enjie Dong, Qiang Zhu, R. Mark Ward. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode[J]. J. Mater. Sci. Technol., 2021, 90: 45-57.
Ni | Ta | W | Co | Cr | Ti | Nb | Al | Mo | C | B | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 1.63 | 2.67 | 8.47 | 15.83 | 3.41 | 0.74 | 3.36 | 1.71 | 0.1 | 0.009 | 0.03 |
Table 1 Nominal chemical component of the powders used in wt%.
Ni | Ta | W | Co | Cr | Ti | Nb | Al | Mo | C | B | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 1.63 | 2.67 | 8.47 | 15.83 | 3.41 | 0.74 | 3.36 | 1.71 | 0.1 | 0.009 | 0.03 |
Fig. 3. (a) Schematic diagram of the 67° raster scan strategy, (b,c) schematic diagrams of the sample cutting method, (d-f) analysis procedure for the crack density, (g-i) analysis procedure for the porosity.
Continuous-wave mode | Pulsed-wave mode | |
---|---|---|
Scan speed (mm/s) | 800 | 800 |
Laser power (W) | 250 | 250 |
Hatch spacing (μm) | 50 | 50 |
Thickness of layer (μm) | 30 | 30 |
Frequency (kHz) | N/A | 5 |
Duty ratio (%) | N/A | 70 |
Scan strategy | Raster 67° | Raster 67° |
Table 2 LPBF parameters for the fabrication of the bulk samples and the single tracks.
Continuous-wave mode | Pulsed-wave mode | |
---|---|---|
Scan speed (mm/s) | 800 | 800 |
Laser power (W) | 250 | 250 |
Hatch spacing (μm) | 50 | 50 |
Thickness of layer (μm) | 30 | 30 |
Frequency (kHz) | N/A | 5 |
Duty ratio (%) | N/A | 70 |
Scan strategy | Raster 67° | Raster 67° |
Fig. 5. OM metallographs of (a) the CWed sample showing the cracks, (b,c) views at high magnification of the cracks in the CWed sample, (d) the PWed sample showing the pores, views at high magnification showing the pores attributed to (c) lack of fusion and (d) metallurgical pore in the PWed sample.
Fig. 7. Porosity, crack density and surface roughness for the CWed and PWed samples, the error bars showing the standard deviations (s.d.) calculated over the measurements from 3 sections.
Fig. 8. (a) Misorientation angle distribution of the grain boundaries, (b) misorientation angle distribution around the cracks, (c) relative cracking rate in the CWed sample.
Fig. 9. OM images of the single tracks on the substrate without powders under (a) continuous-wave and (b) pulsed-wave modes, (c) and (d) are the views at high magnification of (a) and (b), inserted figure in (d) demonstrating the definition of the spot distance, 3D reconstruction profiles of the printed top surfaces of the (e) CWed and (f) PWed samples using LSCM.
Fig. 10. SEM images showing (a,d) the melt pools, (b,e) the microstructures at high magnification and (c,f) the carbides, (g,h) EBSD IPF maps showing the grain structures of the CWed and PWed samples, respectively, (i) the grain size distribution.
Fig. 12. (a, d) IQ results based on the EBSD mapping showing LAGBs, MAGBs and HAGBs, (b, e) extracted LAGBs from (a, d), (c, f) extracted HAGBs from (a, d) for the CWed and PWed samples, respectively.
Fig. 13. Tensile properties for the as-fabricated CWed and PWed samples at room temperature, the error bars showing the standard deviations (s.d.) calculated over 3 measurements.
Fig. 14. EDS mapping results for the (a) CWed and (b) PWed samples, (c) longitudinal section of the crack in the CWed sample, (d) view at high magnification of (c), thermodynamic calculations showing (e) the distribution of elements in the liquid phase during solidification and (f) the solidification path in the equilibrium and Scheil modes.
Fig. 15. Calculated thermal history (temperature profiles, heating and cooling rates) versus time of P2 under the continuous-wave and pulsed-wave modes.
[1] |
C. Qiu, H. Chen, Q. Liu, S. Yue, H. Wang, Mater. Charact. 148 (2019) 330-344.
DOI URL |
[2] |
V.D. Divya, R. Muñoz-Moreno, O.M.D.M. Messé, J.S. Barnard, S. Baker, T. Illston, H.J. Stone, Mater. Charact. 114 (2016) 62-74.
DOI URL |
[3] | A. Adeyemi, E.T. Akinlabi, R.M. Mahamood, Mater. Today: Proc. 5 (9) (2018) 18510-18517. |
[4] | K.S. Prakash, T. Nancharaih, V.V. Rao, Mater. Today: Proc. 5 (2) (2018) 3873-3882. |
[5] |
N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, G. Bruno, Mater. Des. 134 (2017) 139-150.
DOI URL |
[6] |
K. Mumtaz, N. Hopkinson, Rapid Prototyp. J. 15 (2) (2009) 96-103.
DOI URL |
[7] |
Q. Han, R. Mertens, M.L. Monterosistiaga, S. Yang, R. Setchi, K. Vanmeensel, B. V. Hooreweder, S.L. Evans, H. Fan, Mater. Sci. Eng. A 732 (2018) 228-239.
DOI URL |
[8] |
X. Wang, L.N. Carter, B. Pang, M.M. Attallah, M.H. Loretto, Acta Mater 128 (2017) 87-95.
DOI URL |
[9] |
H. Wang, X. Zhang, G. Wang, J. Shen, G.Q. Zhang, Y. Li, M. Yan, J. Alloys Compd. 807 (2019) 151662.
DOI URL |
[10] |
N. Elbagoury, M.A. Waly, A. Nofal, Mater. Sci. Eng. A 487 (2008) 152-161.
DOI URL |
[11] |
A. Ramakrishnan, G.P. Dinda, Mater. Sci. Eng.A 740- 741 (2019) 1-13.
DOI URL |
[12] |
N. Perevoshchikova, J. Rigaud, Y. Sha, M. Heilmaier, B. Finnin, E. Labelle, X. Wu, Rapid Prototyp. J. 23 (5) (2017) 881-892.
DOI URL |
[13] |
J. Xu, X. Lin, P. Guo, Y. Hu, X. Wen, L. Xue, J. Liu, W. Huang, Mater. Sci. Eng. A 691 (2017) 71-80.
DOI URL |
[14] |
S. Chou, M. Trask, J. Danovitch, X.L. Wang, J. Choi, M. Brochu, Mater. Charact. 143 (2018) 27-33.
DOI URL |
[15] |
A.G. Demir, L. Mazzoleni, L. Caprio, M. Pacher, B. Previtali, Opt. Laser Technol. 113 (2019) 15-26.
DOI URL |
[16] |
L. Wang, S. Wang, X. Hong, J. Manuf. Process. 35 (2018) 4 92-4 99.
DOI URL |
[17] |
S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder, L. Song, Mater. Des. 119 (2017) 351-360.
DOI URL |
[18] | V. Laitinen, H. Piili, P. Nyamekye, K. Ullakko, A. Salminen, Procedia Manuf 36 (2019) 176-183. |
[19] | C.A. Biffi, J. Fiocchi, P. Bassani, A. Tuissi, Addit. Manuf. 24 (2018) 639-646. |
[20] |
Y. Tian, J.A. Munizlerma, M. Brochu, Mater. Charact. 131 (2017) 306-315.
DOI URL |
[21] | J. Risse, Additive Manufacturing of Nickel-Base Superalloy IN738LC By Laser Powder Bed Fusion, RWTH Aachen University, 2019 PhD Thesis. |
[22] |
J.A. Muñiz-Lerma, Y. Tian, X. Wang, R. Gauvin, M. Brochu, Progress Addit. Manuf. 4 (2019) 97-107.
DOI URL |
[23] |
N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov, Rapid Prototyp. J. 6 (3) (2000) 155-161.
DOI URL |
[24] | J. Wu, L. Wang, X. An, Optik (Stuttg) 137 (137) (2017) 65-78. |
[25] |
P.N. Quested, R.F. Brooks, L. Chapman, R. Morrell, Y.M. Youssef, K.C. Mills, Mater. Sci. Technol. 25 (2) (2009) 154-162.
DOI URL |
[26] |
K.C. Mills, Y. Su, Z. Li, R.F. Brooks, ISIJ Int. 44 (10) (2004) 1661-1668.
DOI URL |
[27] |
M.N. Ahsan, C.P. Paul, L.M. Kukreja, A.J. Pinkerton, J. Mater. Process. Technol. 211 (4) (2011) 602-609.
DOI URL |
[28] |
C. Guo, S. Li, S. Shi, X. Li, X. Hu, Q. Zhu, R.M. Ward, J. Mater. Process. Technol. 285 (2020) 116788.
DOI URL |
[29] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Int. J. Mach. Tools Manuf. 116 (2017) 96-106.
DOI URL |
[30] |
Y. Pu, S. Kou, Z. Zhang, T. Dong, X. Guo, H. Qu, China Foundry 14 (2017) 244-250.
DOI URL |
[31] |
Y. Chen, F. Lu, K. Zhang, P. Nie, S.R. Elmi Hosseini, K. Feng, Z. Li, J. Alloys Compd. 670 (2016) 312-321.
DOI URL |
[32] | O. Messé, T. Muñoz-Moreno R. Illston, S. Baker, H. Stone, Addit. Manuf. 22 (2018) 394-404. |
[33] |
O.A. Ojo, N.L. Richards, M.C. Chaturvedi,., Scr. Mater. 50 (5) (2004) 641-646.
DOI URL |
[34] |
J. Xu, X. Lin, Y. Zhao, P. Guo, X. Wen, Q. Li, H. Yang, H. Dong, L. Xue, W. Huang, Metall. Mater. Trans. A 49 (10) (2018) 5118-5136.
DOI URL |
[35] |
D. Heydari, A.S. Fard, A. Bakhshi, J. Drezet, J. Mater. Process. Technol. 214 (3)(2014) 6 81-6 87.
DOI URL |
[36] |
M. Cloots, P.J. Uggowitzer, K. Wegener, Mater. Des. 89 (2016) 770-784.
DOI URL |
[37] |
W. Zhou, G. Zhu, R. Wang, C. Yang, Y. Tian, L. Zhang, A. Dong, D. Wang, D. Shu, B. Sun, Mater. Sci. Eng. A 791 (2020) 139745.
DOI URL |
[38] |
M. Rappaz, A. Jacot, W.J. Boettinger, Metall. Mater. Trans. A 34 (3) (2003) 467-479.
DOI URL |
[39] |
W.T. Read, W. Shockley, Phys. Rev. 78 (3) (1950) 275-289.
DOI URL |
[40] | Q. Han, Y. Gu, R. Setchi, F. Lacan, R. Johnston, S.L. Evans, S. Yang, Addit. Manuf. 30 (2019) 100919. |
[41] |
S. Zhang, R. Singer, Metall. Mater. Trans. A 35 (2004) 939-946.
DOI URL |
[42] |
Y. Tang, A. Wilkinson, R. Reed, Metall. Mater. Trans. A 49 (2018) 4324-4342.
DOI URL |
[43] |
M. Rombouts, J. Kruth, L. Froyen, P. Mercelis, CIRP Ann 55 (1) (2006) 187-192.
DOI URL |
[44] | X. Ding, L. Wan, S. Wang, Optik (Stuttg) 127 (22) (2016) 10898-10907. |
[1] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[2] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[3] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[4] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[5] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
[6] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[7] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[8] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
[9] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
[10] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[11] | Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 40(0): 146-157. |
[12] | Le Zhou, Abhishek Mehta, Brandon McWilliams, Kyu Cho, Yongho Sohn. Microstructure, precipitates and mechanical properties of powder bed fused inconel 718 before and after heat treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1153-1164. |
[13] | Tan Liming, Li Yunping, Liu Feng, Nie Yan, Jiang Liang. Superplastic behavior of a powder metallurgy superalloy during isothermal compression [J]. J. Mater. Sci. Technol., 2019, 35(11): 2591-2599. |
[14] | Tian Sugui,Zhu Xinjie,Wu Jing,Yu Huichen,Shu Delong,Qian Benjiang. Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(8): 790-798. |
[15] | Zhongnan Bi, Jianxin Dong, Lei Zheng, Xishan Xie. Phenomenon and Mechanism of High Temperature Low Plasticity in High-Cr Nickel-based Superalloy [J]. J. Mater. Sci. Technol., 2013, 29(2): 187-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||