J. Mater. Sci. Technol. ›› 2021, Vol. 90: 37-44.DOI: 10.1016/j.jmst.2021.04.001
• Research Article • Previous Articles Next Articles
Bo Yua,c, Fei Maa,c, Dongjiang Chenb,c,1, Katam Srinivasa,c, Xiaojuan Zhanga,c, Xinqiang Wanga,c, Bin Wanga,c, Wanli Zhanga,c, Zegao Wangd,c,*(), Weidong Heb,c,*(
), Yuanfu Chena,b,c,*(
)
Received:
2021-02-20
Revised:
2021-03-30
Accepted:
2021-04-13
Published:
2021-11-05
Online:
2021-11-05
Contact:
Zegao Wang,Weidong He,Yuanfu Chen
About author:
yfchen@uestc.edu.cn (Y. Chen).1 These authors contribute equally to this work.
Bo Yu, Fei Ma, Dongjiang Chen, Katam Srinivas, Xiaojuan Zhang, Xinqiang Wang, Bin Wang, Wanli Zhang, Zegao Wang, Weidong He, Yuanfu Chen. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries[J]. J. Mater. Sci. Technol., 2021, 90: 37-44.
Fig. 1. (a) Schematic of the synthetic procedure of the MPQ@G/S composite. (b) Schematic illustration of the catalytic electrode accelerates polysulfide conversion and mitigates LiPS shuttling. (c) SEM image of MPQ@G/S. (d) High-resolution TEM image and (e) the size histogram of MoP QDs. (f) TEM and (g) corresponding HAADF-STEM image of MPQ@G. (h-l) STEM-EDX elemental mappings of MPQ@G hybrid showing the uniform spatial distribution of (i) C, (j) Mo, (k) P.
Fig. 3. (a) Cyclic performance of the MPQ@G/S, MoP/G/S, and Graphene/S at 0.2 C. (b) Rate performances at various rates of the cathode. (c) Cyclic performance of the MPQ@G/S at 1 C for 600 cycles. (d) Cycling stability of the MPQ@G/S cathodes in pouch cells with an E/S ratio of 5.5 µL mg-1. (e) Photograph of MPQ@G/S pouch cell with a lighting LED device.
Fig. 4. CV curves of symmetric cells with (a) MPQ@G and (b) MoP/G in electrolytes with and without 0.2 M Li2S6 at 50 mV s-1. (c) Chronoamperometry curves of Li2S8 solution discharged at 2.05 V on the surface of (c) MPQ@G and (d) MoP/G.
Fig. 5. Electron density map of (a), Li2S, (b), Li2S2, (c), Li2S4, (d), Li2S6, (e), Li2S8, on MoP (100). (f), Adsorption energies between MoP (100) and polysulfides. Digital photos of the glass vials of the (g) Graphene/S and (h) MPQ@G/S cells with increasing discharge time.
[1] |
J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 12 (2019) 344-350.
DOI URL |
[2] |
R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H. Cheng, Adv. Mater. 31 (2019) 1800863.
DOI URL |
[3] |
X. Chen, T. Hou, K.A. Persson, Q. Zhang, Mater. Today 22 (2019) 142-158.
DOI URL |
[4] |
L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, J. Lu, Joule 3 (2019) 361-386.
DOI URL |
[5] |
M. Jana, R. Xu, X.B. Cheng, J.S. Yeon, J.M. Park, J.Q. Huang, H.S. Park, Energy Environ Sci. 13 (2020) 1049-1075.
DOI URL |
[6] |
Y. Song, W. Cai, L. Kong, J. Cai, Q. Zhang, J. Sun, Adv. Energy Mater. 10 (2019) 1901075.
DOI URL |
[7] |
H. Wu, Y. Li, J. Ren, D. Rao, Q. Zheng, L. Zhou, D. Lin, Nano Energy 55 (2019) 82-92.
DOI URL |
[8] |
X. Gao, X. Yang, M. Li, Q. Sun, J. Liang, J. Luo, J. Wang, W. Li, J. Liang, Y. Liu, S. Wang, Y. Hu, Q. Xiao, R. Li, T. Sham, X. Sun, Adv. Funct. Mater. 29 (2019) 1806724.
DOI URL |
[9] |
X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, J. Energy Chem. 42 (2020) 144-168.
DOI URL |
[10] |
Y. Li, C. Wang, W. Wang, A.Y.S. Eng, M. Wan, L. Fu, E. Mao, G. Li, J. Tang, Z.W. Seh, Y. Sun, ACS Nano 14 (2020) 1148-1157.
DOI URL |
[11] | G. Chen, Y. Li, W. Zhong, F. Zheng, J. Hu, X. Ji, M. Liu, Energy Storage Mater. 25 (2020) 547-554. |
[12] |
J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su, G. Wang, J. Mater. Chem. A 6 (2018) 2797-2807.
DOI URL |
[13] |
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q. Yang, Energy. Environ. Sci. 10 (2017) 1694-1703.
DOI URL |
[14] |
C. Gao, C. Fang, H. Zhao, J. Yang, Z. Gu, W. Sun, W. Zhang, S. Li, L. Xu, X. Li, F. Huo, J. Power Sources 421 (2019) 132-138.
DOI URL |
[15] |
K. Xi, D. He, C. Harris, Y. Wang, C. Lai, H. Li, P.R. Coxon, S. Ding, C. Wang, R. V. Kumar, Adv. Sci. 6 (2019) 1800815.
DOI URL |
[16] |
B. Yuan, D. Hua, X. Gu, Y. Shen, L. Xu, X. Li, B. Zheng, J. Wu, W. Zhang, S. Li, F. Huo, J. Energy Chem. 48 (2020) 128-135.
DOI URL |
[17] |
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Adv. Mater. 32 (2020) 2002168.
DOI URL |
[18] |
W.G. Lim, S. Kim, C. Jo, J. Lee, Angew. Chem. Int. Ed. 131 (2019) 18920-18931.
DOI URL |
[19] |
G. Xia, Z. Zheng, J. Ye, X. Li, M.J. Biggs, C. Hu, Chem. Eng. J. 406 (2021) 126823.
DOI URL |
[20] |
Z. Ye, Y. Jiang, J. Qian, W. Li, T. Feng, L. Li, F. Wu, R. Chen, Nano Energy 64 (2019) 103965.
DOI URL |
[21] |
G. Zhou, J. Sun, Y. Jin, W. Chen, C. Zu, R. Zhang, Y. Qiu, J. Zhao, D. Zhuo, Y. Liu, X. Tao, W. Liu, K. Yan, H.R. Lee, Y. Cui, Adv. Mater. 29 (2017) 1603366.
DOI URL |
[22] |
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J. Wang, K.H. Lim, X. Wang, Energy Environ. Sci. 7 (2014) 2624-2629.
DOI URL |
[23] |
Z. Xing, Q. Liu, A.M. Asiri, X. Sun, Adv. Mater. 26 (2014) 5702-5707.
DOI URL |
[24] |
Y. Luo, N. Luo, W. Kong, H. Wu, K. Wang, S. Fan, W. Duan, J. Wang, Small 14 (2018) 1702853.
DOI URL |
[25] | J. Zheng, W. Zhang, J. Hu, Y. Xie, Y. Lai, B. Hong, K. Zhang, Z. Zhang, Mater. Today Energy 18 (2020) 100531. |
[26] |
Y. Hu, W. Chen, T. Lei, B. Zhou, Y. Jiao, Y. Yan, X. Du, J. Huang, C. Wu, X. Wang, Y. Wang, B. Chen, J. Xu, C. Wang, J. Xiong, Adv. Energy Mater. 9 (2019) 1802955.
DOI URL |
[27] |
D. Cai, L. Wang, L. Li, Y. Zhang, J. Li, D. Chen, H. Tu, W. Han, J. Mater. Chem. A 7 (2019) 806-815.
DOI URL |
[28] |
Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, ACS Nano 11 (2016) 12658-12667.
DOI URL |
[29] |
Z. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S.P. Lau, Nat. Commun. 9 (2018) 4164.
DOI URL |
[30] |
Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun, H. Wang, Angew. Chem. Int. Ed. 57 (2018) 15549-15552.
DOI URL |
[31] |
B. Yu, D. Chen, Z. Wang, F. Qi, X. Zhang, X. Wang, Y. Hu, B. Wang, W. Zhang, Y. Chen, J. He, W. He, Chem. Eng. J. 399 (2020) 125837.
DOI URL |
[32] |
H. Yuan, H. Peng, B. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J. Huang, Q. Zhang, Adv. Energy Mater. 9 (2019) 1802768.
DOI URL |
[33] |
S. Kandula, K.R. Shrestha, N.H. Kim, J.H. Lee, Small 14 (2018) 1800291.
DOI PMID |
[34] | S. Niu, S. Zhang, R. Shi, J. Wang, W. Wang, X. Chen, Z. Zhang, J. Miao, A. Amini, Y. Zhao, C. Cheng, Energy Storage Mater. 33 (2020) 73-81. |
[35] | Z. Wang, X. Xiong, J. Li, M. Dong, Mater. Today Phys. 16 (2021) 100290. |
[36] |
H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, J. Yang, C.P. Cullen, N. McEvoy, C. J. Zhang, Adv. Funct. Mater. 29 (2019) 1901907.
DOI URL |
[37] | J. Ren, L. Chen, D. Yang, Z. Yuan, Appl. Catal. B Enviorn. 263 (2020) 118352. |
[38] |
Z. Wang, W. Gao, C. Ding, H. Qi, S. Kang, L. Cui, J. Colloid Interface Sci. 584 (2021) 875-884.
DOI URL |
[39] |
C. Li, Q. Fu, K. Zhao, Y. Wang, H. Tang, H. Li, H. Jiang, L. Chen, Carbon 139 (2018) 1117-1125.
DOI URL |
[40] |
Z. Zheng, H. Wu, H. Liu, Q. Zhang, X. He, S. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D. Peng, M. Liu, M. Wang, ACS Nano 14 (2020) 9545-9561.
DOI URL |
[41] |
Q. Zong, H. Yang, Q. Wang, Q. Zhang, Y. Zhu, H. Wang, Q. Shen, Chem. Eng. J. 361 (2019) 1-11.
DOI URL |
[42] |
L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, ACS Energy Lett. 5 (2020) 1177-1185.
DOI URL |
[43] |
J. Yang, D. Guo, S. Zhao, Y. Lin, R. Yang, D. Xu, N. Shi, X. Zhang, L. Lu, Y. Lan, J. Bao, M. Han, Small 15 (2019) 1804546.
DOI URL |
[44] |
T. Rahimi-Aghdam, Z. Shariatinia, M. Hakkarainen, V. Haddadi-Asl, J. Hazard. Mater. 381 (2020) 121013.
DOI PMID |
[45] |
J. Ren, Y. Zhou, L. Xia, Q. Zheng, J. Liao, E. Long, F. Xie, C. Xu, D. Lin, J. Mater. Chem. A 6 (2018) 13835-13847.
DOI URL |
[46] |
H. Li, Q. Jin, D. Li, X. Huan, Y. Liu, G. Feng, J. Zhao, W. Yang, Z. Wu, B. Zhong, X. Guo, B. Wang, ACS Appl. Mater. Interfaces 12 (2020) 22971-22980.
DOI URL |
[47] | W. Ren, W. Ma, S. Zhang, B. Tang, Energy Storage Mater. 23 (2019) 707-732. |
[48] |
R. Li, H. Shen, E. Pervaiz, M. Yang, Chem. Eng. J. 404 (2021) 126462.
DOI URL |
[49] |
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang, M. Li, S. Pan, T. Tang, T. Wu, P. Liu, Y. Hou, H. Lu, ACS Nano 14 (2020) 8495-8507.
DOI PMID |
[50] |
C. Lu, Y. Chen, Y. Yang, X. Chen, Nano Lett. 20 (2020) 5522-5530.
DOI URL |
[51] |
C. Luo, E. Hu, K.J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X. Yang, C. Wang, P. Natl. Acad. Sci. USA 117 (2020) 14712-14720.
DOI URL |
[52] |
Y.J. Yen, S.H. Chung, Chem. Comm 57 (2020) 2009-2012.
DOI URL |
[53] |
M. Chen, W. Xu, S. Jamil, S. Jiang, C. Huang, X. Wang, Y. Wang, H. Shu, K. Xiang, P. Zeng, Small 14 (2018) 1803134.
DOI URL |
[54] |
Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao, S. Zhang, C. Zhong, J. Zhu, J. Lu, H. Zhang, ACS Nano 14 (2020) 6673-6682.
DOI URL |
[55] |
S. Liu, X. Zhang, S. Wu, X. Chen, X. Yang, W. Yue, J. Lu, W. Zhou, ACS Nano 14 (2020) 8220-8231.
DOI URL |
[56] |
L. Zhang, F. Wan, H. Cao, L. Liu, Y. Wang, Z. Niu, Small 16 (2020) 1907153.
DOI URL |
[57] |
F. Ma, Y. Wan, X. Wang, X. Wang, J. Liang, Z. Miao, T. Wang, C. Ma, G. Lu, J. Han, Y. Huang, Q. Li, ACS Nano 14 (2020) 10115-10126.
DOI URL |
[58] |
M. Zhang, Y. Guo, Y. Wei, B. Wang, Y. Zhang, H. Wu, X. Zhou, Y. Zhang, Q. Wang, J. Mater. Chem. A 8 (2020) 18987-19000.
DOI URL |
[1] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[2] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[3] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[4] | Lishuang Fan, Yu Zhang, Hao Zhou, Zhikun Guo, Yujie Feng, Naiqing Zhang. Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery [J]. J. Mater. Sci. Technol., 2021, 88(0): 250-257. |
[5] | Ning Sun, Wen Li, Shuang Wei, Hui Gao, Wei Wang, Shougang Chen. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 91(0): 187-199. |
[6] | Cheng-Fei Cao, Wen-Jun Liu, Hui Xu, Ke-Xin Yu, Li-Xiu Gong, Bi-Fan Guo, Yu-Tong Li, Xiao-Lan Feng, Ling-Yu Lv, Hong-Tao Pan, Li Zhao, Jia-Yun Li, Jie-Feng Gao, Guo-Dong Zhang, Long-Cheng Tang. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives [J]. J. Mater. Sci. Technol., 2021, 85(0): 194-204. |
[7] | Wen Sun, Yanjia Yang, Zhengqing Yang, Lida Wang, Jing Wang, Dake Xu, Guichang Liu. Review on the corrosion-promotion activity of graphene and its inhibition [J]. J. Mater. Sci. Technol., 2021, 91(0): 278-306. |
[8] | Mei Yu, Jing Shang, Yu Kuang. Efficient photocatalytic reduction of chromium (VI) using photoreduced graphene oxide as photocatalyst under visible light irradiation [J]. J. Mater. Sci. Technol., 2021, 91(0): 17-27. |
[9] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[10] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[11] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[12] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[13] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[14] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[15] | Xin Wang, Jun Wang, Bin Wei, Nan Zhang, Junyuan Xu, Hongwei Miao, Lifeng Liu, Chenliang Su, Ying Li, Zhongchang Wang. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 78(0): 170-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||