J. Mater. Sci. Technol. ›› 2021, Vol. 90: 66-75.DOI: 10.1016/j.jmst.2021.02.027
• Research Article • Previous Articles Next Articles
Shuqun Chena, Jinshu Wanga,*(
), Ronghai Wub,*(
), Zheng Wangb, Yangzhong Lic, Yiwen Lud, Wenyuan Zhoua, Peng Hua, Hongyi Lia
Received:2020-12-08
Revised:2021-02-09
Accepted:2021-02-16
Published:2021-11-05
Online:2021-11-05
Contact:
Jinshu Wang,Ronghai Wu
About author:ronghai.wu@nwpu.edu.cn (R. Wu).Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films[J]. J. Mater. Sci. Technol., 2021, 90: 66-75.
Fig. 1. Structural characterization of the 900 nm-thick W film: (a) GIXRD patterns, (b) θ-2θ XRD pattern, (c-f) in-plane and cross-section TEM images with selected area diffraction (SAED) pattern. GD in the inserts represents film growth direction.
Fig. 3. (a) The 2θ vs. sin2ψ plot for the 900 nm-thick W film determined by XRD method. (b) Modulus-displacement curve for W film as a function of indentation depth.
Fig. 4. (a) Schematic illustration of heterogeneous nucleation of W on SiO2 substrate. (b) Simulated structure of the four investigated W/SiO2 interfaces. The blue, red and grey spheres represent Si, O and W atoms, respectively.
Fig. 5. (a) The interfacial and surface energies of various W surfaces. (b) The Gibbs free energy change of β-W and α-W nucleation as a function of nucleus radius.
| Orientation | c11 | c12 | c44 | s11 | s12 | s44 | $M_{hkl}^{\text{V}}$ | $M_{hkl}^{\text{R}}$ | $M_{hkl}^{\text{VRH}}$ |
|---|---|---|---|---|---|---|---|---|---|
| GPa | 10-3 1/GPa | GPa | |||||||
| β-W[200] | 595.0 [ | 162.2 [ | 98.1 [ | 1.9 | -0.4 | 10.2 | 668.8 | 666.7 | 667.8 |
| β-W[210] | 565.2 | 513.3 | 539.3 | ||||||
| β-W[211] | 492.5 | 454.5 | 473.5 | ||||||
Table 1 Calculated and reported values of the Elastic Stiffness (cij), Compliance (sij) and Modulus ($M_{hkl}^{\text{V}}, M_{hkl}^{\text{R}}$, and $M_{hkl}^{\text{VRH}}$) of the β-W orientations.
| Orientation | c11 | c12 | c44 | s11 | s12 | s44 | $M_{hkl}^{\text{V}}$ | $M_{hkl}^{\text{R}}$ | $M_{hkl}^{\text{VRH}}$ |
|---|---|---|---|---|---|---|---|---|---|
| GPa | 10-3 1/GPa | GPa | |||||||
| β-W[200] | 595.0 [ | 162.2 [ | 98.1 [ | 1.9 | -0.4 | 10.2 | 668.8 | 666.7 | 667.8 |
| β-W[210] | 565.2 | 513.3 | 539.3 | ||||||
| β-W[211] | 492.5 | 454.5 | 473.5 | ||||||
Fig. 6. Phase (left) and grain evolution (right) during PVD process at different time steps: (a) t = 0, (b) t = 5, (c) t = 200 and (d) t = 600. η is the order parameter with η=-1 for solid phase and η=1 for vapour phase, θ is the crystal misorientation to a specific orientation (i.e. [200] in the present work).
Fig. 7. (a) Sequential TEM images of the same region during in-situ heating at 150 °C. (b) TEM micrograph and (c) SAED pattern taken after annealing at 300 °C.
| [1] |
J. Li, S. Ullah, R. Li, M. Liu, H. Cao, D. Li, Y. Li, X.Q. Chen, Phys. Rev. B 99 (2019) 165110.
DOI URL |
| [2] |
J. Liu, K. Barmak, Acta Mater. 104 (2016) 223-227.
DOI URL |
| [3] |
A. Kaidatzis, V. Psycharis, K. Mergia, D. Niarchos, Thin Solid Films 619 (2016) 61-67.
DOI URL |
| [4] | H.L. Sun, Z.X. Song, D.G. Guo, F. Ma, K.W. Xu, J. Mater. Sci. Technol. 26 (2010) 87-92. |
| [5] |
A. Nagakubo, H.T. Lee, H. Ogi, T. Moriyama, T. Ono, Appl. Phys. Lett. 116 (2020) 21901.
DOI URL |
| [6] |
C.-.F. Pai, L. Liu, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Appl. Phys. Lett. 101 (2012) 122404.
DOI URL |
| [7] | K.U. Demasius, T. Phung, W. Zhang, B.P. Hughes, S.H. Yang, A. Kellock, W. Han, A. Pushp, S.S.P. Parkin, Nat. Commun. 7 (2016) 1-7. |
| [8] |
J.S. Lee, J. Cho, C.Y. You, J. Vac. Sci. Technol. A 34 (2016) 021502.
DOI URL |
| [9] |
T.J. Vink, W. Walrave, J.L.C. Daams, A.G. Dirks, M.A.J. Somers, K.J.A. van den Aker, J. Appl. Phys. 74 (1993) 988-995.
DOI URL |
| [10] |
F.T.N. Vüllers, R. Spolenak, Thin Solid Films 577 (2015) 26-34.
DOI URL |
| [11] |
F. Zhu, Z. Xie, Z. Zhang, AIP Adv. 8 (2018) 35321.
DOI URL |
| [12] |
Y.G. Shen, Y.W. Mai, Mater. Sci. Eng. A 284 (2000) 176-183.
DOI URL |
| [13] |
Y.G. Shen, Y.W. Mai, J. Mater. Sci. 36 (2001) 93-98.
DOI URL |
| [14] |
W. Qin, F. Ren, R.P. Doerner, G. Wei, Y. Lv, S. Chang, M. Tang, H. Deng, C. Jiang, Y. Wang, Acta Mater. 153 (2018) 147-155.
DOI URL |
| [15] |
Z. Hou, P. Zhang, K. Wu, Y. Wang, G. Liu, G. Zhang, J. Sun, Int. J. Refract. Met. Hard Mater. 82 (2019) 7-14.
DOI URL |
| [16] |
A. Jiang, T.A. Tyson, L. Axe, L. Gladczuk, M. Sosnowski, P. Cote, Thin Solid Films 479 (2005) 166-173.
DOI URL |
| [17] |
J.J. Colin, G. Abadias, A. Michel, C. Jaouen, Acta Mater. 126 (2017) 4 81-4 93.
DOI URL |
| [18] |
S.M. Rossnagel, I.C. Noyan, C. Cabral, J. Vac. Sci. Technol. B 20 (2002) 2047-2051.
DOI URL |
| [19] | Y.J. Kim, S.G. Kang, Y. Oh, G.W. Kim, I.H. Cha, H.N. Han, Y.K. Kim, Mater. Char- act. 145 (2018) 473-478. |
| [20] |
D. Choi, Microelectron. Eng.183- 184 (2017) 19-22.
DOI URL |
| [21] | A. Mitra, N. Siva Prasad, G.D. Janaki Ram, J.Mater. Eng. Perform. 25 (2016) 1384-1393. |
| [22] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
| [23] |
J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W. Craig Carter, Acta Mater. 51 (2003) 6035-6058.
DOI URL |
| [24] |
P. Keblinski, A. Maritan, F. Toigo, R. Messier, J.R. Banavar, Phys. Rev. E 53 (1996) 759-778.
PMID |
| [25] |
J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Nanoscale 5 (2013) 899-903.
DOI PMID |
| [26] |
J.H. Park, S.Y. Lee, Physica C 314 (1999) 112-116.
DOI URL |
| [27] |
C.V. Thompson, R. Carel, Mater. Sci. Eng. B 32 (1995) 211-219.
DOI URL |
| [28] |
L.R. Shaginyan, J.G. Han, V.R. Shaginyan, J. Musil, J. Vac. Sci. Technol. A 24 (2006) 1083-1090.
DOI URL |
| [29] |
J.A. Thornton, D.W. Hoffman, Thin Solid Films 171 (1989) 5-31.
DOI URL |
| [30] |
Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Ceram.Int. 43 (2017) 11992-11997.
DOI URL |
| [31] |
P.R.T. Avila, E.P. da Silva, A.M. Rodrigues, K. Aristizabal, F. Pineda, R.S. Coelho, J.L. Garcia, F. Soldera, M. Walczak, H.C. Pinto, Sci. Rep. 9 (2019) 15898.
DOI URL |
| [32] |
C.X. Wang, G.W. Yang, Mater. Sci. Eng. R 49 (2005) 157-202.
DOI URL |
| [33] |
A. Khaleghi, S.M. Sadrameli, M. Manteghian, Rev. Inorg. Chem. 40 (2020) 167-192.
DOI URL |
| [34] | |
| [35] |
K. Barmak, J. Liu, L. Harlan, P. Xiao, J. Duncan, G. Henkelman, J. Chem. Phys. 147 (2017) 152709.
DOI URL |
| [36] |
R.M. Van Ginhoven, H.P. Hjalmarson, Nucl. Instrum. Methods Phys. Res. Sect. B 255 (2007) 183-187.
DOI URL |
| [37] |
Y.K. Shchipalov, Glass Ceram. 57 (2000) 374-377.
DOI URL |
| [38] |
H. Lee, S.S. Wong, S.D. Lopatin, J. Appl. Phys. 93 (2003) 3796-3804.
DOI URL |
| [39] | K.P. Almtoft, Denmark, 2006. |
| [40] |
R. Krishnan, T. Parker, S. Lee, T.M. Lu, Nanotechnology 20 (2009) 465609.
DOI PMID |
| [41] |
E.A.I. Ellis, M. Chmielus, S.P. Baker, Acta Mater. 150 (2018) 317-326.
DOI URL |
| [42] |
M. Zeitler, J.W. Gerlach, T. Kraus, B. Rauschenbach, Appl. Phys. Lett. 70 (1997) 1254-1256.
DOI URL |
| [43] |
A.R. Shetty, A. Karimi, Appl. Surf. Sci. 258 (2011) 1630-1638.
DOI URL |
| [44] | G.E. Adesakin, O.M. Osiele, O.O. Olushola, E.B. Faweya, T.H. Akande, Int. Res. J. Pure Appl.Phys. 5 (2017) 8-18. |
| [45] |
C. Zhang, H. Tian, C. Hao, J. Zhao, Q. Wang, E. Liu, C. Dong, J. Mater. Sci. 48 (2013) 3138-3146.
DOI URL |
| [46] |
X. Sun, K. Gao, X. Pang, Q. Sun, J. Li, Appl. Surf. Sci. 452 (2018) 1-10.
DOI URL |
| [47] |
M.L. Hicks, J. Tabeart, M.J. Edwards, E.D. Le Boulbar, D.W.E. Allsopp, C.R. Bowen, A.C.E. Dent, Integr. Ferroelectr. 133 (2012) 17-24.
DOI URL |
| [48] |
R. Krishnamurthy, D.J. Srolovitz, J. Appl. Phys. 99 (2006) 43504.
DOI URL |
| [49] |
M. Moriyama, K. Matsunaga, T. Morita, S. Tsukimoto, M. Murakami, Mater. Trans. 45 (2004) 3033-3038.
DOI URL |
| [50] |
D. Pirzada, P. Trivedi, D. Field, G.J. Cheng, J. Appl. Phys. 102 (2007) 13519.
DOI URL |
| [51] |
C.V. Thompson, Interface Sci 6 (1998) 85-93.
DOI URL |
| [52] |
Y. Xu, J.H. Park, Z. Yao, C. Wolverton, M. Razeghi, J. Wu, V.P. Dravid, ACS Appl. Mater. Interfaces 11 (2019) 5536-5543.
DOI URL |
| [1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
| [2] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
| [3] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
| [4] | Shangcheng Zhou, Yao-Jian Liang, Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 90(0): 30-36. |
| [5] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
| [6] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
| [7] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
| [8] | Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 158-170. |
| [9] | Fusen Yuan, Geping Li, Fuzhou Han, Yingdong Zhang, Ali Muhammad, Wenbin Guo, Jie Ren, Chengze Liu, Hengfei Gu, Gaihuan Yuan. A new type face-centered cubic zirconium phase in pure zirconium [J]. J. Mater. Sci. Technol., 2021, 81(0): 236-239. |
| [10] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
| [11] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
| [12] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
| [13] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
| [14] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
| [15] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
