J. Mater. Sci. Technol. ›› 2021, Vol. 72: 162-171.DOI: 10.1016/j.jmst.2020.09.024
• Research Article • Previous Articles Next Articles
Peiru Yang, Chenxi Liu*(), Qianying Guo, Yongchang Liu*(
)
Received:
2020-07-30
Revised:
2020-09-16
Accepted:
2020-09-16
Published:
2021-05-10
Online:
2021-05-10
Contact:
Chenxi Liu,Yongchang Liu
About author:
ycliu@tju.edu.cn (Y. Liu).Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy[J]. J. Mater. Sci. Technol., 2021, 72: 162-171.
C | P | Cr | Mo | Nb | Ti | Al | Co | B | Fe | W | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.024 | 0.011 | 18.53 | 2.85 | 5.34 | 0.8 | 1.55 | 9.26 | 0.0072 | 8.82 | 1.08 | Bal. |
Table 1 Chemical composition of the explored Ni18Cr9Co9Fe5Nb3Mo superalloy (wt.%).
C | P | Cr | Mo | Nb | Ti | Al | Co | B | Fe | W | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.024 | 0.011 | 18.53 | 2.85 | 5.34 | 0.8 | 1.55 | 9.26 | 0.0072 | 8.82 | 1.08 | Bal. |
Fig. 3. Flow curves of hot compression under different temperatures: (a) 1150 °C, (b) 1100 °C, (c) 1050 °C and (d) 1000 °C for the nickel-based superalloy.
Fig. 4. Linear fits to calculate activation energy: (a) ${\text{ln}}\dot \varepsilon$ versus ln σp, (b) ${\text{ln}}\dot \varepsilon$ versusσp, (c) ${\text{ln}}\dot \varepsilon$ versus ${\text{lnsinh}}\alpha {\sigma _{\text{p}}}$, (d) ${\text{lnsinh}}\alpha {\sigma _{\text{p}}}$ versus.1000/T.
Method | TF | TR | M |
---|---|---|---|
AARE (%) | 9.12 | 9.03 | 5.68 |
Standard variance (MPa2) | 6597.0 | 6430.1 | 2338.8 |
Table 2 AARE and standard variance of the experimental data using different method.
Method | TF | TR | M |
---|---|---|---|
AARE (%) | 9.12 | 9.03 | 5.68 |
Standard variance (MPa2) | 6597.0 | 6430.1 | 2338.8 |
Fig. 10. Scatter diagrams for both traditional and evaluated Zener-Hollomon parameters: (a) Z parameter acquired by modified method, (b) Y parameter, (c) contrast of Zt, Zm and $Z_{\text{m}}^{\text{'}}$.
[1] |
T.M. Pollock, S. Tin, J. Propul. Power 22 (2006) 361-374.
DOI URL |
[2] | K. Chen, J. Dong, Z. Yao, Met. Mater. Int. (2019) http://dx.doi.org/10.1007/s12540-019-00447-4. |
[3] | S. Kumar, G. Sudhakar Rao, K. Chattopadhyay, G.S. Mahobia, N.C. Santhi Srinivas, V.Singh, Mater. Des. 62 (2014) 76-82. |
[4] |
M. Ma, Z. Wang, X. Zeng, Mater. Charact. 106 (2015) 420-427.
DOI URL |
[5] |
G. Asala, J. Andersson, O.A. Ojo, Mater. Sci. Eng. A 738 (2018) 111-124.
DOI URL |
[6] |
R. Zhao, X.J. Li, M. Wan, J.Q. Han, B. Meng, Z.Y. Cai, Mater. Des. 130 (2017) 413-425.
DOI URL |
[7] |
T. Kurzynowski, I. Smolina, K. Kobiela, B. Kuznicka, E. Chlebus, Mater. Des. 132 (2017) 349-359.
DOI URL |
[8] |
L.C.M. Valle, A. I.C.Santana, M.C. Rezende, J. Dille, O.R. Mattos, L.H. de Almeida, J. Alloys Compd. 809 (2019), 151781.
DOI URL |
[9] |
H. Yuan, W.C. Liu, Mater. Sci. Eng. A 408 (2005) 281-289.
DOI URL |
[10] |
H.J. Zhang, C. Li, Y. Liu, Q.Y. Guo, Y. Huang, H.J. Li, J.X. Yu, J. Alloys Compd. 716 (2017) 65-72.
DOI URL |
[11] |
Y.B. Tan, Y.H. Ma, F. Zhao, J. Alloys Compd. 741 (2018) 85-96.
DOI URL |
[12] |
R. Gujrati, C. Gupta, J.S. Jha, S. Mishra, A. Alankar, Mater. Sci. Eng. A 744 (2019) 638-651.
DOI URL |
[13] |
F. Zhang, D. Liu, Y. Yang, C. Liu, Z. Zhang, H. Wang, J. Wang, J. Alloys Compd. 817 (2020), 152773.
DOI URL |
[14] |
Y. Wang, W.Z. Shao, L. Zhen, B.Y. Zhang, Mater. Sci. Eng. A 528 (2011) 3218-3227.
DOI URL |
[15] | D. Cailliard, J.L. Martin, Elsevier, 2003, pp. 323-358. |
[16] | J.C. Malas, Ohio University, 1991. |
[17] |
P.R. Yang, M.H. Cai, C.F. Wu, J.H. Su, X.P. Guo, Mater. Sci. Eng. A 729 (2018) 230-240.
DOI URL |
[18] |
C. Shi, X.G. Chen, Mater. Sci. Eng. A 650 (2016) 197-209.
DOI URL |
[19] |
C. Shi, W. Mao, X.G. Chen, Mater. Sci. Eng. A 571 (2013) 83-91.
DOI URL |
[20] | K.T. Son, M.H. Kim, S.W. Kim, J.W. Lee, S.K. Hyun, J. Alloys Compd. 740 (2018) 96-108. |
[21] |
Y. Sun, Z. Wan, L. Hu, J. Ren, Mater. Des. 86 (2015) 922-932.
DOI URL |
[22] |
Q. Zhao, F. Yang, R. Torrens, L. Bolzoni, Mater. Des. 169 (2019), 107682.
DOI URL |
[23] |
K.A. Babu, Y.H. Mozumder, R. Saha, V.S. Sarma, S. Mandal, Mater. Sci. Eng. A 734 (2018) 269-280.
DOI URL |
[24] | M. Wang, W. Wang, Z. Liu, C. Sun, L. Qian, Mater. Today Commun. 14 (2018) 188-198. |
[25] |
R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, P.A. Midgley, Acta Mater. 130 (2017) 271-280.
DOI URL |
[26] |
E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messé, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, C.M.F. Rae, Acta Mater. 60 (2012) 2757-2769.
DOI URL |
[27] |
M.Q. Wang, Q. Deng, J.H. Du, Z.L. Tian, J. Zhu, Mater. Trans. 56 (2015) 635-641.
DOI URL |
[28] |
C.M. Sellars, W.J. McTegart, Acta Metall. 14 (1966) 1136-1138.
DOI URL |
[29] | C. Zener, J. Hollomon, J.Appl. Phys. 15 (1944) 22-32. |
[30] |
Z.L. Zhao, Y.Q. Ning, H.Z. Guo, Z.K. Yao, M.W. Fu, Mater. Sci. Eng. A 620 (2015) 383-389.
DOI URL |
[31] |
Y.C. Lin, H. Yang, D.G. He, J. Chen, Mater. Des. 183 (2019), 108122.
DOI URL |
[32] | S. Li, Y.Z. Chen, Y.K. Cao, F. Liu, Acta Metall. Sin.-Engl. Lett. 29 (2016) 120-128. |
[33] | J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang |
H. Wang, X. Wang, Y. Fang, Y. Wei, L. Meng, J. Lu, W. Yang, Sci. Rep. 6 (2016) 35345.
DOI URL |
|
[34] |
A.A. Guimaraes, J.J. Jonas, Metall. Trans. A 12 (1981) 1655-1666.
DOI URL |
[35] |
S.K. Oh, M.E. Kilic, J.B. Seol, J.S. Hong, A. Soon, Y.K. Lee, Acta Mater. 188 (2020) 366-375.
DOI URL |
[36] |
M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, J.A. Hawk, Mater. Charact. 157 (2019), 109915.
DOI URL |
[37] |
Y.J. Xu, D.Q. Qi, K. Du, C.Y. Cui, H.Q. Ye, Scr. Mater. 87 (2014) 37-40.
DOI URL |
[38] |
J. Zhang, C. Wu, Y. Peng, X. Xia, J. Li, J. Ding, C. Liu, X. Chen, J. Dong, Y. Liu, J. Alloys Compd. 835 (2020), 155195.
DOI URL |
[39] | Berger, , O. James, Statistical Decision Theory, Springer New York, 1980. |
[40] |
S. Mitsche, P. Poelt, C. Sommitsch, J. Microsc. 227 (2007) 267-274.
DOI URL |
[41] | S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17 (2011) 316-329. |
[42] |
H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, Acta Mater. 59 (2011) 6441-6448.
DOI URL |
[43] |
A.P. Gerlich, L. Yue, P.F. Mendez, H. Zhang, Acta Mater. 58 (2010) 2176-2185.
DOI URL |
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
[3] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[4] | Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49(0): 56-69. |
[5] | XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 241-253. |
[6] | Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method [J]. J. Mater. Sci. Technol., 2020, 38(0): 125-134. |
[7] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[8] | Weili Cheng, Yang Bai, Shichao Ma, Lifei Wang, Hongxia Wang, Hui Yu. Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map [J]. J. Mater. Sci. Technol., 2019, 35(6): 1198-1209. |
[9] | Liwei Zhong, Wenli Gao, Zhaohui Feng, Zheng Lu, Congcong Zhu. Hot deformation characterization of as-homogenized Al-Cu-Li X2A66 alloy through processing maps and microstructural evolution [J]. J. Mater. Sci. Technol., 2019, 35(10): 2409-2421. |
[10] | Z. Liu, Z.B. Zhao, J.R. Liu, Q.J. Wang, R. Yanga. Distinct dendritic α phase emerging on the surface of primary α phase in a compressed near-α titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34(4): 666-669. |
[11] | Zhou Zhaohui, Fan Qichao, Xia Zhihui, Hao Aiguo, Yang Wenhua, Ji Wei, Cao Haiqiao. Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy [J]. J. Mater. Sci. Technol., 2017, 33(7): 637-644. |
[12] | Zhou Yinghui, Liu Yongchang, Zhou Xiaosheng, Liu Chenxi, Yu Jianxin, Huang Yuan, Li Huijun, Li Wenya. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33(12): 1448-1456. |
[13] | Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering [J]. J. Mater. Sci. Technol., 2016, 32(4): 291-298. |
[14] | Yang Yan,Peng Xiaodong,Ren Fengjuan,Wen Haiming,Su Junfei,Xie Weidong. Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg-Li-Al-Sr Alloy [J]. J. Mater. Sci. Technol., 2016, 32(12): 1289-1296. |
[15] | G.R. Ebrahimi, H. Keshmiri, A.R. Maldar, A. Momeni. Dynamic Recrystallization Behavior of 13%Cr Martensitic tainless Steel under Hot Working Condition [J]. J Mater Sci Technol, 2012, 28(5): 467-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||