J. Mater. Sci. Technol. ›› 2021, Vol. 72: 154-161.DOI: 10.1016/j.jmst.2020.07.020
• Research Article • Previous Articles Next Articles
Liyuan Han1, Qiang Song*(), Kezhi Li*(
), Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang
Received:
2020-05-26
Revised:
2020-06-27
Accepted:
2020-07-04
Published:
2021-05-10
Online:
2021-05-10
Contact:
Qiang Song,Kezhi Li
About author:
likezhi@nwpu.edu.cn (K. Li).1 These authors contributed equally to this work.
Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding[J]. J. Mater. Sci. Technol., 2021, 72: 154-161.
Fig. 1. The fabrication process of CNT-ERG-CNF hybrid foams. (a) schematic of the CNT-ERG-CNF hybrid foams fabrication; (b) photographs of the SiO2 nanowire foam, CNT foam, CNT-ERG foam and CNT-ERG-CNF foam; SEM image of (c) SiO2 nanowire, (d) CNT, (e) CNT-ERG, (f) CNF-0.06, (g) CNF-0.1 and (h) CNF-0.12.
Fig. 2. TEM characterization of CNT-ERG-CNF hybrid foams. (a) a connected 3D framework of CNT-ERG; (b) a single CNT-ERG; (c) (d) hierarchical structure of CNT-ERG-CNF foam, showing hollow CNT and a great deal of CNFs grow on ERG; (e) (f) CNF extending to other ERG to form a conductive network; (g) two CNFs extending to different ERG to form a conductive network; (h) two CNFs tangling with each other to form a conductive network; (i) (j) herringbone structure of CNF; (k) (l) CNF and ERG junction area; (m) schematic of five- or seven-membered ring defects in the junction area of CNF and ERG; (n),(o),(p) layer structure model of CNF.
Fig. 3. Characterization of CNT-ERG-CNF hybrid foams. (a) XRD patterns of samples; (b) Raman spectra of CNT-ERG and CNF-0.1; (c) decomposition of Raman spectra of the first order for CNT-ERG; (d) The relation between ID/IG and FWHM(G); (e) XPS spectra of ERG-CNF and CNF-0.1 in which only involve C 1s and O 1s peaks; (f) decomposition of C 1s XPS spectra of CNF-0.1; (g) the ration of ID/IG obtained by Raman analysis and sp3/sp2 obtained by XPS analysis; (h) FT-IR spectra of samples.
CNT | CNT-ERG | CNF-0.06 | CNF-0.1 | CNF-0.12 |
---|---|---|---|---|
0.42 ± 0.02 | 0.65 ± 0.02 | 0.58 ± 0.01 | 0.55 ± 0.01 | 0.47 ± 0.01 |
Table 1 Electrical conductivity (S cm-1) of CNT, CNT-ERG and CNT-ERG-CNF hybrid foams.
CNT | CNT-ERG | CNF-0.06 | CNF-0.1 | CNF-0.12 |
---|---|---|---|---|
0.42 ± 0.02 | 0.65 ± 0.02 | 0.58 ± 0.01 | 0.55 ± 0.01 | 0.47 ± 0.01 |
Fig. 4. (a) EMI SE in the X-band of the CNT, CNT-ERG and CNT-ERG-CNF hybrid foams at a thickness of 1.5 mm; (b) average SET, SER and SEA values in the X-band of the CNT, CNT-ERG and CNT-ERG-CNF hybrid foams at a thickness of 1.5 mm; (c) average R, A, and T values in the X-band of the CNT, CNT-ERG and CNT-ERG-CNF hybrid foams at a thickness of 1.5 mm; (d) EMI SE in the X-band of CNF-0.12 foams at different thickness; (e) average SET, SER and SEA values in X-band of CNF-0.12 foams at different thickness; (f) average R, A, and T values in the X-band of the CNT, CNT-ERG and CNT-ERG-CNF hybrid foams at different thickness; (g) EMI SE in the X-band of CNF-0.12 foams before and after repeatedly bending to a radius of ~2.5 mm for 10000 times; (h) schematic diagram of bending test; (i) the value of SSE and SSE/t of the hybrid foams with different structure and thickness.
[1] |
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489.
DOI URL |
[2] |
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25 (2013) 1296-1300.
DOI URL |
[3] |
X. Liu, X. Yin, W. Duan, F. Ye, X. Li, J. Mater. Sci. Technol. 35 (2019) 2832-2839.
DOI URL |
[4] |
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Nat. Commun. 6 (2015) 6628.
DOI URL |
[5] |
Y.L. Yang, M.C. Gupta, Nano Lett. 5 (2005) 2131-2134.
DOI URL |
[6] |
X. Liu, N. Chai, Z. Yu, H. Xu, X. Li, J. Liu, X. Yin, R. Riedel, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[7] |
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 30 (2020) 2000475.
DOI URL |
[8] |
Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, B. Wei, Adv. Mater. 29 (2017) 1701583.
DOI URL |
[9] |
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater 26 (2016) 303-310.
DOI URL |
[10] |
H. Abbasi, M. Antunes, J. Ignacio Velasco, Prog. Mater Sci. 103 (2019) 319-373.
DOI URL |
[11] |
M. Ma, R. Yang, C. Zhang, B. Wang, Z. Zhao, W. Hu, Z. Liu, D. Yu, F. Wen, J. He, Y. Tian, Carbon 148 (2019) 504-511.
DOI URL |
[12] |
L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Carbon 111 (2017) 94-102.
DOI URL |
[13] |
L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Carbon 145 (2019) 61-66.
DOI |
[14] |
W. Yue, Y. Liu, M. Zhao, F. Ye, L. Cheng, J. Mater. Sci. Technol. 35 (2019) 2897-2905.
DOI URL |
[15] |
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Carbon 122 (2017) 74-81.
DOI URL |
[16] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, G. Junwei, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI URL |
[17] |
H. Zhang, J. Zhang, H. Zhang, Comp. Mater. Sci. 38 (2007) 857-864.
DOI URL |
[18] |
X. Li, X. Yin, H. Xu, M. Han, M. Li, S. Liang, L. Cheng, L. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 34524-34533.
DOI URL |
[19] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 28 (2018) 1707205.
DOI URL |
[20] |
X. Yin, H. Li, Y. Fu, R. Yuan, J. Lu, Chem. Eng. J. 392 (2020) 124820.
DOI URL |
[21] |
G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 8 (2008) 3166-3170.
DOI PMID |
[22] |
J. Niu, M. Li, W. Choi, L. Dai, Z. Xia, Carbon 67 (2014) 627-634.
DOI URL |
[23] |
J.M. Romo-Herrera, M. Terrones, H. Terrones, V. Meunier, ACS Nano 2 (2008) 2585-2591.
DOI PMID |
[24] |
S.H. Lee, D. Kang, I.K. Oh, Carbon 111 (2017) 248-257.
DOI URL |
[25] |
Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao, Z.Z. Yu, Adv. Funct. Mater. 26 (2016) 447-455.
DOI URL |
[26] |
X. Yin, H. Li, L. Han, J. Meng, J. Lu, L. Zhang, W. Li, Q. Fu, K. Li, Q. Song, Chem. Eng. J. 387 (2020) 124025.
DOI URL |
[27] |
K.A. Ritter, J.W. Lyding, Nat. Mater. 8 (2009) 235-242.
DOI PMID |
[28] |
J.H. Chen, W.N. Liu, T. Yang, B. Li, J.D. Su, X.M. Hou, K.C. Chou, Cryst. Growth Des. 14 (2014) 4624-4630.
DOI URL |
[29] |
Q. Song, H. Yan, K. Liu, K. Xie, W. Li, W. Gai, G. Chen, H. Li, C. Shen, Q. Fu, S. Zhang, L. Zhang, B. Wei, Adv. Energy Mater. 8 (2018) 1800564.
DOI URL |
[30] |
H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, Carbon 107 (2016) 36-45.
DOI URL |
[31] |
Y. Fu, Y. Zhang, X. Yin, T. Li, J. Zhang, J. Am. Ceram. Soc. 103 (2020) 3458-3465.
DOI URL |
[32] |
Y. Fu, Y. Zhang, T. Li, J. Zhang, J. Am. Ceram. Soc. 103 (2020) 1304-1311.
DOI URL |
[33] |
X. Wang, J.C. Shu, X.M. He, M. Zhang, X.X. Wang, C. Gao, J. Yuan, M.S. Cao, ACS Sustain. Chem. Eng. 6 (2018) 14017-14025.
DOI URL |
[34] |
X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, M.S. Cao, L. Guo, RSC Adv. 4 (2014) 19594-19601.
DOI URL |
[35] |
W. Chen, L. Yan, Nanoscale 2 (2010) 559-563.
DOI URL |
[36] |
M. Crespo, M. Gonzalez, A.L. Elias, L.P. Rajukumar, J. Baselga, M. Terrones, J. Pozuelo, Phys. Status Solidi-Rapid Res. Lett. 8 (2014) 698-704.
DOI URL |
[37] |
J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang, Z. Ren, C. Zhi, J. Yu, Adv. Mater. 30 (2018) 1705380.
DOI URL |
[38] |
F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Carbon 50 (2012) 1972-1980.
DOI URL |
[39] |
Y.Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, ACS Sustain. Chem. Eng. 3 (2015) 1419-1427.
DOI URL |
[40] |
Q. Li, L. Chen, J. Ding, J. Zhang, X. Li, K. Zheng, X. Zhang, X. Tian, Carbon 104 (2016) 90-105.
DOI URL |
[41] |
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, ACS Appl. Mater. Interfaces 9 (2017) 9059-9069.
DOI URL |
[42] |
Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Carbon 139 (2018) 271-278.
DOI URL |
[43] |
A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, S. Kumari, J. Mater. Chem. C 5 (2017) 322-332.
DOI URL |
[44] |
X. Liu, X. Yin, L. Kong, Q. Li, Y. Liu, W. Duan, L. Zhang, L. Cheng, Carbon 68 (2014) 501-510.
DOI URL |
[45] |
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, RSC Adv. 5 (2015) 24342-24351.
DOI URL |
[46] |
L. Chen, X. Yin, X. Fan, M. Chen, X. Ma, L. Cheng, L. Zhang, Carbon 95 (2015) 10-19.
DOI URL |
[47] |
S. Farhan, R. Wang, K. Li, Ceram. Int. 42 (2016) 11330-11340.
DOI URL |
[48] |
S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, RSC Adv. 4 (2014) 13839-13849.
DOI URL |
[49] |
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[50] |
J.A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603-1607.
DOI URL |
[51] |
T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 321 (2008) 1468-1472.
DOI URL |
[52] |
H.L. Xu, X.W. Yin, X.M. Fan, Z.M. Tang, Z.X. Hou, M.H. Li, X.L. Li, L.T. Zhang, L.F. Cheng, Carbon 148 (2019) 421-429.
DOI URL |
[53] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[54] |
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65 (2013) 124-139.
DOI URL |
[55] |
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao, J. Zhang, M. Wang, R. Che, Small 15 (2019) 1900900.
DOI PMID |
[56] |
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Adv. Funct. Mater. 30 (2020) 1908299.
DOI URL |
[57] |
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Adv. Mater. 32 (2020) 1907156.
DOI URL |
[1] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[2] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[3] | Yiru Mao, Yixiang Wu, Pengju Zhang, Yang Yu, Zhizhu He, Qian Wang. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing [J]. J. Mater. Sci. Technol., 2021, 61(0): 132-137. |
[4] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[5] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[6] | Tian-Yu Wang, Jia-Lin Meng, Qing-Xuan Li, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique [J]. J. Mater. Sci. Technol., 2021, 60(0): 21-26. |
[7] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[8] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[9] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[10] | Min Guo, Cheng Yang, Dong Gao, Qiang Li, Aihua Zhang, Jiajun Feng, Hui Yang, Ruiqiang Tao, Zhen Fan, Min Zeng, Guofu Zhou, Xubing Lu, J.- M. Liu. A flexible and high temperature tolerant strain sensor of La0.7Sr0.3MnO3/Mica [J]. J. Mater. Sci. Technol., 2020, 44(0): 42-47. |
[11] | Wufan Chen, Xin Yan. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review [J]. J. Mater. Sci. Technol., 2020, 43(0): 175-188. |
[12] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
[13] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
[14] | Shengyue Hou, Wenle Ma, Guanghao Li, Yi Zhang, Yunyun Ji, Fei Fan, Yi Huang. Excellent Terahertz shielding performance of ultrathin flexible Cu/graphene nanolayered composites with high stability [J]. J. Mater. Sci. Technol., 2020, 52(0): 136-144. |
[15] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||