J. Mater. Sci. Technol. ›› 2021, Vol. 60: 177-185.DOI: 10.1016/j.jmst.2020.02.079
• Research Article • Previous Articles Next Articles
Xiaoxiao Lia,b, Meiqiong Oua, Min Wanga, Long Zhanga, Yingche Maa,*(), Kui Liua,*(
)
Received:
2019-11-23
Revised:
2020-01-08
Accepted:
2020-02-17
Published:
2021-01-10
Online:
2021-01-22
Contact:
Yingche Ma,Kui Liu
Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy[J]. J. Mater. Sci. Technol., 2021, 60: 177-185.
B | C | Cr | Mo | Al | Ti | Nb | W | Fe | Ni | |
---|---|---|---|---|---|---|---|---|---|---|
Alloy 1 | 0 | 0.12 | 19.23 | 1.50 | 1.23 | 2.97 | 1.51 | 2.87 | 4.57 | balance |
Alloy 2 | 0.007 | 0.12 | 19.19 | 1.38 | 1.23 | 2.95 | 1.50 | 2.90 | 4.52 | balance |
Alloy 3 | 0.010 | 0.12 | 19.32 | 1.50 | 1.22 | 2.97 | 1.51 | 2.81 | 4.58 | balance |
Table 1 The measured chemical composition of three experimental alloys (wt. %).
B | C | Cr | Mo | Al | Ti | Nb | W | Fe | Ni | |
---|---|---|---|---|---|---|---|---|---|---|
Alloy 1 | 0 | 0.12 | 19.23 | 1.50 | 1.23 | 2.97 | 1.51 | 2.87 | 4.57 | balance |
Alloy 2 | 0.007 | 0.12 | 19.19 | 1.38 | 1.23 | 2.95 | 1.50 | 2.90 | 4.52 | balance |
Alloy 3 | 0.010 | 0.12 | 19.32 | 1.50 | 1.22 | 2.97 | 1.51 | 2.81 | 4.58 | balance |
Fig. 3. EPMA analysis of 0.007 wt. % B as-cast alloy: (a) secondary electron image, (b) C-map, (c) B-map, (d) Cr-map and 0.010 wt. % B ac-cast alloy: (e) secondary electron image, (f) C-map, (g) B-map, (h) Cr-map.
Element | Al | W | Ti | Cr | Fe | Ni | Nb | Mo |
---|---|---|---|---|---|---|---|---|
wt. % | 0.1 | 30.7 | 0.2 | 60.2 | 0.6 | 2.2 | 0.4 | 5.5 |
at. % | 0.4 | 11.6 | 0.3 | 80.0 | 0.8 | 2.6 | 0.3 | 4.0 |
Table 2 The chemical composition of M5B3 in 0.010 wt. % B as-cast alloy.
Element | Al | W | Ti | Cr | Fe | Ni | Nb | Mo |
---|---|---|---|---|---|---|---|---|
wt. % | 0.1 | 30.7 | 0.2 | 60.2 | 0.6 | 2.2 | 0.4 | 5.5 |
at. % | 0.4 | 11.6 | 0.3 | 80.0 | 0.8 | 2.6 | 0.3 | 4.0 |
Fig. 5. SEM images of (a-f) carbides morphology and (g-i) γ′ distribution in heat-treated alloys: (a, d, and g) 0B alloy, (b, e, and h) 0.007 wt. % B alloy, (c, f, and i) 0.010 wt. % B alloy.
Fig. 6. (a) TEM image of M23C6 carbides along GB in 0.010 wt. % B heat-treated alloy, (b) selected area diffraction pattern and (c) EDS spectra of M23C6; (d) SIMS image and (e) B-map of 0.010 wt. % B heat-treated alloy, (f) the distribution of B at GB.
Element | C | Al | W | Ti | Cr | Fe | Ni | Mo |
---|---|---|---|---|---|---|---|---|
wt.% | 6.9 | 0.2 | 17.8 | 0.2 | 62.0 | 0.9 | 5.6 | 6.4 |
at.% | 27.9 | 0.3 | 4.7 | 0.2 | 58.1 | 0.8 | 4.7 | 3.2 |
Table 3 The chemical composition of M23C6 carbide in 0.010 wt. % B heat-treated alloy.
Element | C | Al | W | Ti | Cr | Fe | Ni | Mo |
---|---|---|---|---|---|---|---|---|
wt.% | 6.9 | 0.2 | 17.8 | 0.2 | 62.0 | 0.9 | 5.6 | 6.4 |
at.% | 27.9 | 0.3 | 4.7 | 0.2 | 58.1 | 0.8 | 4.7 | 3.2 |
Fig. 7. Decomposition process of the lamellar borides in 0.010 wt. % B as-cast alloy during heat treatment at 1150 ℃ for (a) 0 min, (b) 5 min and (c) 15 min.
Fig. 9. SEM images of tensile fracture surfaces at room temperature: (a) 0B, (b) 0.007 wt. % B, (c) 0.010 wt. % B; the longitudinal microstructure of (d and e) 0B heat-treated alloy after tensile testing at room temperature; (f) TEM image of M23C6 carbide in 0B heat-treated alloy.
Fig. 11. The fracture surfaces and the longitudinal microstructures of (a, d, and g) 0B, (b, e, and h) 0.007 wt. % B, (c, f, and i) 0.010 wt. % B alloys after stress rupture testing at 750 ℃/430 MPa.
[1] | T.J. Garosshen, T.D. Tillman, G.P. McCarthy, Metall. Mater. Trans. A 18 (1987) 69-77. |
[2] | E.S. Huron, K.R. Bain, D.P. Mourer, J.J. Schirra, P.L. Reynolds, E.E. Montero, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (Eds.), Proc. Int. Symp. Superalloys, 2004, pp. 73-81. |
[3] | D. Blavette, P. Caron, T. Khan, Scr. Mater. 20(1986) 1395-1400. |
[4] | C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Sci. Eng. A 639 (2015) 380-388. |
[5] | C.T. Liu, C.L. White, J.A. Horton, Acta Metall 33 (1985) 213-229. |
[6] | T. Takasugi, O. Izumi, Acta Metall 33 (1985) 1247-1258. |
[7] | Y. Liu, K.Y. Chen, G. Lu, J.H. Zhang, Z.Q. Hu, Acta Mater. 45(1997) 1837-1849. |
[8] | J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 429 (2006) 341-347. |
[9] | K. Laha, J. Kyono, T. Sasaki, S. Kishimoto, N. Shinya, Metall. Mater. Trans. A 36 (2005) 399-409. |
[10] | K. Laha, J. Kyono, N. Shinya 56 (2007) 915-918. |
[11] |
P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 491 (2008) 159-163.
DOI URL |
[12] | C.S. Lee, G.W. Han, R.E. Smallman, D. Feng, J.K.L. Lai, Acta Metall 47 (1999) 1823-1830. |
[13] |
A.P. Sutton, R.W. Balluffi, New York, 1995.
URL PMID |
[14] |
D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Curr. Opin. Solid State Mat. Sci. 18(2014) 253-261.
DOI URL |
[15] | H.R. Zhang, O.A. Ojo, M.C. Chaturvedi, Scr. Mater. 58(2008) 167-170. |
[16] | O.A. Ojo, H.R. Zhang, Metall. Mater. Trans. A 39 (2008) 2799-2803. |
[17] | H.R. Zhang, O.A. Ojo, J. Mater. Sci. 43(2008) 6024-6028. |
[18] | O.A. Ojo, H.R. Zhang, Philos. Mag. Abingdon (Abingdon) 90(2010) 765-782. |
[19] | B.P. Wu, L.H. Li, J.T. Wu, Z. Wang, Y.B. Wang, X.F. Chen, J.X. Dong, J.T. Li, Int. J. Miner. Metall. Mater. 21(2014) 1120-1126. |
[20] | Y.L. Cai, Y.R. Zheng, Metallographic Study of Superalloys, National Defence Industry Press, 1966. |
[21] | X. Huang, M.C. Chaturvedi, N.L. Richards, J. Jackman, Acta Mater. 45(1997) 3095-3107. |
[22] | B.C. Yan, J. Zhang, L.H. Lou, Mater. Sci. Eng. A 474 (2008) 39-47. |
[23] | B.N. Du, L.Y. Sheng, C.Y. Cui, J.X. Yang, X.F. Sun, Mater. Charact. 128(2017) 109-114. |
[24] | P. Kontis, H.A. Mohd Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M. P. Moody, C.R.M. Grovenor, R.C. Reed, Acta Mater. 103(2016) 688-699. |
[25] |
M.Q. Ou, Y.C. Ma, X.C. Hao, B.F. Wan, T. Liang, K. Liu, J. Mater. Sci. Technol. 33(2017) 1300-1307.
DOI URL |
[26] | X.C. Hao, L. Zhang, X. Zhao, T. Liang, Y.C. Ma, K. Liu, Mater. Sci. Forum 816 (2015) 586-593. |
[27] | M.A. Burke, J. Greggi, G.A. Whitlow, Scr. Metall. Mater. 18(1984) 91-94. |
[28] | C.L. White, J.H. Schneibel, R.A. Padgett, Metall. Mater. Trans. A 14 (1983) 595-610. |
[29] |
M. McLean, A. Strang, Met. Technol. 11(1984) 454-464.
DOI URL |
[30] | B. Tian, C. Lind, O. Paris, Mater. Sci. Eng. A 358 (2003) 44-51. |
[31] |
Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Charact. 96(2014) 28-39.
DOI URL |
[32] | C.N. Wei, H.Y. Bor, L. Chang, J. Alloys. Compd. 509(2011) 5708-5714. |
[33] | M. Kurban, U. Erb, K.T. Aust, Scr. Mater. 54(2006) 1053-1058. |
[34] |
X.B. Hu, Y.L. Zhu, N.C. Sheng, X.L. Ma, Sci. Rep. 4(2014) 7367.
DOI URL PMID |
[35] | X.B. Hu, Y.L. Zhu, X.H. Shao, H.Y. Niu, L.Z. Zhou, X.L. Ma, Acta Mater. 100(2015) 64-72. |
[36] | F. Yang, J.S. Hou, S. Gao, C.S. Wang, L.Z. Zhou, Mater. Sci. Eng. A 715 (2018) 126-136. |
[37] | C.L. Briant, Embrittlement of Engineering Alloys, Elsevier, 2013. |
[38] | F. Sun, Y.F. Gu, J.B. Yan, Y.X. Xu, Z.H. Zhong, M. Yuyama, J. Alloys. Compd. 687(2016) 389-401. |
[39] | D. Wu, T.T. Yao, D.Z. Li, S.P. Lua, Mater. Sci. Eng. A 731 (2018) 21-28. |
[40] |
J.T. Guo, H. Li, C. Sun, S.H. Wang, D.G. Ren, L.Y. Xiong, J. Jiang, Mater. Sci. Eng. A 152 (1992) 120-125.
DOI URL |
[41] | S. Dryepondt, D. Monceau, F. Crabos, C. Vernault, Mater. Sci. Forum, Trans. Tech. Publ. 461-464(2004) 647-654. |
[42] |
R. Jiang, N. Gao, P. Reed, J. Mater. Sci. 50(2015) 4379-4386.
DOI URL |
[43] | F.W. Kang, J.F. Sun, G.Q. Zhang, Z. Li, H.F. Ao, J. Shen, Rare Met. Mater. Eng. 36(2007) 1205-1209. |
[44] | J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 429 (2006) 341-347. |
[45] | X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, L.Z. Zhou, H.Q. Ye, Mater. Sci. Eng. A 543 (2012) 121-128. |
[1] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[2] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[3] | Wei Guo, Zhihui Yu, Wenting Wei, Zhenghua Meng, Huajie Mao, Lin Hua. Effect of film types on thermal response, cellular structure, forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts [J]. J. Mater. Sci. Technol., 2021, 92(0): 98-108. |
[4] | Yijie Ban, Yongfeng Geng, Jinrui Hou, Yi Zhang, Meng Zhou, Yanlin Jia, Baohong Tian, Yong Liu, Xu Li, Alex A. Volinsky. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 1-6. |
[5] | Yaqun Xu, Yu Fu, Juan Li, Wenlong Xiao, Xinqing Zhao, Chaoli Ma. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 147-156. |
[6] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | Jinxue Ding, Xiaokang Ma, Xiaomeng Fan, Jimei Xue, Fang Ye, Laifei Cheng. Failure behavior of interfacial domain in SiC-matrix based composites [J]. J. Mater. Sci. Technol., 2021, 88(0): 1-10. |
[9] | Wenming Jiang, Junwen Zhu, Guangyu Li, Feng Guan, Yang Yu, Zitian Fan. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting [J]. J. Mater. Sci. Technol., 2021, 88(0): 119-131. |
[10] | Fengying Zhang, Panpan Gao, Hua Tan, Yao Li, Yongnan Chen, Min Mei, Adam T. Clare, Lai-Chang Zhang. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 88(0): 132-142. |
[11] | Yong-Kang Li, Min Zha, Jian Rong, Hai-long Jia, Zhong-Zheng Jin, Hong-Min Zhang, Pin-Kui Ma, Hong Xu, Ting-Ting Feng, Hui-Yuan Wang. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88(0): 215-225. |
[12] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
[13] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[14] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[15] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||