J. Mater. Sci. Technol. ›› 2020, Vol. 55: 173-181.DOI: 10.1016/j.jmst.2019.04.044
• Research Article • Previous Articles Next Articles
Youzuo Hu, Hongyuan Zhao*(), Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu
Received:
2019-01-28
Accepted:
2019-04-23
Published:
2020-10-15
Online:
2020-10-27
Contact:
Hongyuan Zhao
Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance[J]. J. Mater. Sci. Technol., 2020, 55: 173-181.
Testing condition | ||
---|---|---|
Rate performance | 1.56 | 1.52 |
0.5 C cycling performance | 1.34 | 1.30 |
1 C cycling performance | 1.27 | 1.25 |
Table 1 Mass loading density of the active materials.
Testing condition | ||
---|---|---|
Rate performance | 1.56 | 1.52 |
0.5 C cycling performance | 1.34 | 1.30 |
1 C cycling performance | 1.27 | 1.25 |
Fig. 2. SEM and TEM images of α-LiFeO2 (a, b) and α-LiFeO2/rGO composite (c-f); HRTEM (g) image with corresponding SAED pattern (h) of α-LiFeO2/rGO composite.
Fig. 3. (a) Raman spectra of α-LiFeO2 and α-LiFeO2/rGO composite, (b) N2 adsorption-desorption isotherms, (c) BET pore width of α-LiFeO2 and α-LiFeO2/rGO composite (d) TG curve of α-LiFeO2.
Fig. 5. (a) Cycling performance of α-LiFeO2 and α-LiFeO2/rGO at 0.5 C in the voltage range of 1.5-4.8 V and the corresponding coulombic efficiency, specific charge and discharge curves of α-LiFeO2 (b) and α-LiFeO2/rGO (c), rate performance (d), average specific capacity (e) and cycling performance at 1 C (f) of α-LiFeO2 and α-LiFeO2/rGO.
Fig. 7. Nyquist plots of (a) α-LiFeO2 and (b) α-LiFeO2 /rGO samples, (c) Equivalent circuit model of EIS, (d) the relationship curve between Z? and ω-1/2 in the low frequency.
Sample | Resistance (Ω) | 0 cycle | 10 cycles | 20 cycles | 50 cycles | DLi+ (cm2 S-1) |
---|---|---|---|---|---|---|
α-LiFeO2 | Rct | 230.2 | 249.3 | 304.4 | 610.3 | 1.3 × 10-12 |
α-LiFeO2/rGO | Rct | 113.7 | 127.4 | 172.3 | 251 | 8.24 × 10-12 |
Table 2 Fitting values of the charge transfer resistance (Rct) and DLi+.
Sample | Resistance (Ω) | 0 cycle | 10 cycles | 20 cycles | 50 cycles | DLi+ (cm2 S-1) |
---|---|---|---|---|---|---|
α-LiFeO2 | Rct | 230.2 | 249.3 | 304.4 | 610.3 | 1.3 × 10-12 |
α-LiFeO2/rGO | Rct | 113.7 | 127.4 | 172.3 | 251 | 8.24 × 10-12 |
[1] |
S. Whittingham, Chem. Rev. 104 (2004) 4271-4301.
DOI URL PMID |
[2] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652.
DOI URL PMID |
[3] | X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Adv. Mater. 29 (2017), 1601759. |
[4] | M.M. Kalantarian, S. Asgari, P. Mustarellib, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 107-115. |
[5] |
Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu, S.H. Feng, S.D. Li, L. Zhou, L.Q. Mai, Chem. Soc. Rev. 48 (2019) 285-309.
DOI URL PMID |
[6] | J.G. Li, J.J. Li, J. Luo, L. Wang, X.M. He, Int. J. Electrochem. Sci. 6 (2011) 1550-1561. |
[7] | Y. Sakurai, H. Arai, S. Okada, J. Yamaki, J. Power Sources 68 (1997) 711-715. |
[8] | R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takana, M. Ohashi, Y. Yamaguchi, J. Electrochem. Soc. 143 (1996) 2435-2442. |
[9] | R. Kanno, T. Shirane, Y. Inaba, Y. Kawamoto, J. Power Sources 68 (1997) 145-152. |
[10] | Y. Sakurai, H. Arai, S. Okada, J. Yamaki, J. Power Sources 68 (1997) 711-715. |
[11] | X. Wang, L.S. Gao, F. Zhou, Z.D. Zhang, M.R. Jia, C.M. Tang, T. Shen, H.G. Zheng, J. Cryst. Growth 265 (2004) 220-223. |
[12] | K.Y. Li, C. Hao, F.F. Shu, K.F. Chen, D.F. Xue, Electrochim. Acta 136 (2014), 10-18. |
[13] | M. Catti, M.M. Campillo, J. Power Sources 196 (2011) 3955-3961. |
[14] | P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed 47 (2008), 2930-2946. |
[15] | J. Morales, J. Santos-Pena, Electrochem. commun. 9 (2007) 2116-2120. |
[16] | Y.R. Wang, H.T. Liao, X.F. Qian, M. Wang, RSC Adv. 4 (2014) 3753-3757. |
[17] | L.Y. Tan, Q.L. Tang, X.H. Chen, A. Hu, Electrochim. Acta 137 (2014) 344-351. |
[18] | S. Singh, S. Mitra, Electrochim. Acta 123 (2014) 378-386. |
[19] | M.M. Rahman, J.Z. Wang, M.F. Hassan, Energy Environ. Sci. 4 (2011) 952-957. |
[20] |
M.M. Rahman, A.M. Glushenkov, Z.Q. Chen, X.J. Dai, Phys. Chem. Chem. Phys. 15 (2013) 20371-20378.
DOI URL PMID |
[21] | F. Wen, T. Lv, P. Gao, B. Wu, Q.Q. Liang, Y.Y. Zhang, H.B. Shu, X.K. Yang, L. Liu, X.Y. Wang, Electrochim. Acta 276 (2018) 134-141. |
[22] | B.J. Kim, D.U. Lee, J. Wu, D. Higgins, A. Yu, Z. Chen, J. Phys. Chem. C 117 (2013) 26501-26508. |
[23] | M. Buyukyazi, S. Mathurn, Nano Energy 13 (2015) 28-35. |
[24] | G. Alia, J.H. Lee, H.G. Jung, K.Y. Chung, Nano Energy 42 (2017) 106-114. |
[25] | Y.L. Ruan, K. Wang, S.D. Song, X. Han, B.W. Cheng, Electrochim. Acta 160 (2015) 330-336. |
[26] | L.Q. Mai, X.C. Tian, X. Xu, L. Chang, L. Xu, Chem. Rev. 114 (2014) 11828-11862. |
[27] | Z. Zhang, J.Z. Wang, S.L. Chou, H.K. Liu, K. Ozawa, H. Li, Electrochim. Acta 108 (2013) 820-826. |
[28] | W. Cook, M. Manley, J. Solid State Chem. 183 (2010) 322-326. |
[29] | S.P. Guo, Z. Ma, J.C. Li, H.G. Xue, J. Alloys. Compd. 711 (2017) 8-14. |
[30] | H. Wu, H.F. Li, G.B. Sun, S.L. Ma, X.J. Yang, J. Mater. Chem. C Mater. Opt. Electron. Devices 3 (2015) 5457-5466. |
[31] | L.C. Chen, X.H. Ma, M.Z. Wang, C.H. Chen, X.W. Ge, Electrochim. Acta 215 (2016) 42-49. |
[32] | S.J. Shi, T.T. Deng, M. Zhang, G. Yang, Electrochim. Acta 246 (2017) 1104-1111. |
[33] | N.X. Wang, Z. Lukacs, B. Gadgil, P. Damlin, C. Janaky, C. Kvarnstrom, Electrochim. Acta 231 (2017) 279-286. |
[34] | J. Morales, J. Santospe, R. Trocoli, S. Franger, Electrochim. Acta 53 (2008) 6366-6371. |
[35] | B. Zhang, G. Liu, M. Cheng, Y. Gao, L.J. Zhao, S. Li, F.M. Liu, X. Yan, T. Zhang, P. Sun, G.Y. Lu, Sensor Actuat. B-Chem. 261 (2018) 252-263. |
[36] | X.F. Zhou, F. Wang, Y.M. Zhu, Z.P. Liu, J. Mater. Chem. 21 (2011) 3353-3358. |
[37] | K.S. Dhinds, B.P. Mandal, K. Bazzi, M.W. Lin, M. Nazri, G.A. Nazri, A.C. Oliveira, P. Vaishnava, R. Naik, Z.X. Zhou, Solid State Ion. 253 (2013) 94-100. |
[38] | A.E. Abdel-Ghany, A. Mauger, J. Power Sources 197 (2012) 285-291. |
[39] | Y. Sakurai, H. Arai, J. Yamaki, Solid State Ion. 113 (1998) 29-34. |
[40] | J. Moralesa, J. Santospe, R. Trocolia, S. Frangerb, Electrochim. Acta 53 (2008) 6366-6371. |
[41] | S.H. Wu, H.Y. Liu, J. Power Sources 174 (2007) 789-794. |
[42] | M. Michalska, D.A. Ziolkowska, J.B. Jasinski, P.H. Lee, P. Lawniczak, B. Andrzejewski, A. Ostrowski, W. Bednarski, S.H. Wu, J.Y. Lin, Electrochim. Acta 276 (2018) 37-46. |
[43] | Z. Zhang, X.Q. Liu, Y. Wu, H.Y. Zhao, J. Solid State Electrochem. 19 (2015) 469-475. |
[44] | H.Y. Zhao, F. Li, X.Q. Liu, W.Q. Xiong, B. Chena, H.L. Shao, D.Y. Que, Z. Zhang, Y. Wu, Electrochim. Acta 166 (2015) 124-133. |
[45] | Z. Zhang, X.Q. Liu, L.P. Wang, Y. Wu, H.Y. Zhao, B. Chen, W.Q. Xiong, Electrochim. Acta 168 (2015) 8-15. |
[46] | J. Tu, K. Wu, H. Tang, H.H. Zhou, S.Q. Jiao, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 17021-17028. |
[47] | S. Zhao, M.M. Zhang, Z.H. Wang, X.C. Xian, Electrochim. Acta 276 (2018) 73-80. |
[48] |
C.J. Tang, Y.N. Liu, C. Xu, J.X. Zhu, X.J. Wei, L. Zhou, L. He, W. Yang, L.Q. Mai, Adv. Funct. Mater. 28 (2018), 1704561.
DOI URL |
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[3] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[4] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[5] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[6] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[7] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[8] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[9] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[10] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[11] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[12] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[13] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[14] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[15] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||