J. Mater. Sci. Technol. ›› 2020, Vol. 54: 211-222.DOI: 10.1016/j.jmst.2020.02.072
• Research Article • Previous Articles Next Articles
Zhengliang Liua,b, Shenglong Zhub,*(), Mingli Shenb,*(
), Yixuan Jiaa,b, Wen Wangb, Fuhui Wangc
Received:
2019-11-11
Revised:
2020-02-19
Accepted:
2020-02-27
Published:
2020-10-01
Online:
2020-10-21
Contact:
Shenglong Zhu,Mingli Shen
Zhengliang Liu, Shenglong Zhu, Mingli Shen, Yixuan Jia, Wen Wang, Fuhui Wang. Microstructure and cavitation erosion behavior of sputtered NiCrAlTi coatings with and without N incorporations[J]. J. Mater. Sci. Technol., 2020, 54: 211-222.
Fig. 1. (a) Drawing of test specimen (unit: mm) and (b) characteristic stages of a cumulative erosion-time curve (A: incubation stage; B: acceleration stage; C: maximum rate stage; D: deceleration stage; E: terminal stage; I: nominal incubation time).
Fig. 9. Volume fraction of precipitates and nitrogen contents varying with N2 flux (the blue curve represents the volume fraction-N2 flux relationship and the black represents the nitrogen content-N2 flux relationship).
Fig. 11. (a) Overall cumulative volume loss of five NiCrAlTi(N) coatings and two reference materials as a function of cavitation erosion time and (b) enlarged curve of four NiCrAlTi(N) coatings drawn depending on Fig. 11(a).
Material | NIT/h | MER/μm/h |
---|---|---|
304L stainless steel | 2.6 | 1.14 |
TiN coating | 2.2 | 1.06 |
NiCrAlTi-8N coating | 3.3 | 0.69 |
NiCrAlTi-5N coating | 7.2 | 0.77 |
NiCrAlTi-3N coating | 8.5 | 0.47 |
NiCrAlTi-1N coating | 12 | 0.36 |
N-free NiCrAlTi coating | 12.5 | 0.20 |
Table 1 The nominal incubation time (NIT) and maximum erosion rate (MER) of SS 304L, TiN coating and five NiCrAlTi(N) coatings.
Material | NIT/h | MER/μm/h |
---|---|---|
304L stainless steel | 2.6 | 1.14 |
TiN coating | 2.2 | 1.06 |
NiCrAlTi-8N coating | 3.3 | 0.69 |
NiCrAlTi-5N coating | 7.2 | 0.77 |
NiCrAlTi-3N coating | 8.5 | 0.47 |
NiCrAlTi-1N coating | 12 | 0.36 |
N-free NiCrAlTi coating | 12.5 | 0.20 |
Fig. 12. Eroded surface morphologies of two reference materials: (a) 304 stainless steel after erosion for 30 min; (b) TiN coating after erosion for 2 h.
Fig. 15. Eroded surface morphologies of (a, b) NiCrAlTi-1N, (c, d) NiCrAlTi-3N, (e, f) NiCrAlTi-5N and (g, h) NiCrAlTi-8N coatings at maximum rate state.
[1] | U. Dorji, R. Ghomashchi, Eng. Failure Anal. 44 (2014) 136-147. |
[2] | X.W. Luo, J.I. Bin, Y. Tsujimoto, J. Hydrodyn. 28 (2016) 335-358. |
[3] | V. Caccese, K.H. Light, K.A. Berube, Ships Offshore Struct. 1 (2006) 309-322. |
[4] | B.K. Sreedhar, S.K. Albert, A.B. Pandit, Wear 372-373 (2017) 177-196. |
[5] | E.A. Neppiras, Phys. Rep. 61 (1980) 159-251. |
[6] | K.H. Kim, G. Chahine, J.P. Franc, A. Karimi (Eds.), Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, Springer Publisher,, 2014. |
[7] | J.P. Franc, M. Riondet, A. Karimi, G.L. Chahine, Wear 274-275 (2012) 248-259. |
[8] | M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison, Surf. Coat. Technol. 177-178 (2004) 489-496. |
[9] | M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison, Surf. Coat. Technol. 177-178 (2004) 489-496. |
[10] | R. Singh, S.K. Tiwari, S.K. Mishra, J. Mater. Eng. Perform. 21 (2012) 1539-1551. |
[11] | J. Stella, E. Schüller, C. Heßng, O.A. Hamed, M. Pohl, D. Stöer, Wear 260 (2006) 1020-1027. |
[12] | K. Sang, Y. Li, Wear 189 (1996) 20-24. |
[13] | Y. Wu, H. Sheng, J. Zhang, Z. He, W. Guo, W. Qian, G. Li, Int. J. Refract. Met. Hard Mater. 32 (2012) 21-26. |
[14] | A. Krella, A. Czyżniewski, Wear 260 (2006) 1324-1332. |
[15] | S. Hattori, N. Mikami, Wear 267 (2009) 1954-1960. |
[16] | Z. Wang, J. Zhu, Mater. Sci. Eng. A 358 (2003) 273-278. |
[17] | R.H. Richman, A.S. Rao, D.E. Hodgson, Wear 157 (1992) 401-407. |
[18] | H. Yu, Y.G. Zheng, Z.M. Yao, J. Mater. Sci. Technol. 25 (2009) 758-766. |
[19] | A. Krella, A. Czyżniewski, Wear 265 (2008) 963-970. |
[20] | A. Krella, A. Czyżniewski, Wear 266 (2008) 800-809. |
[21] | A.K. Krella, A. Czyżniewski, A. Gilewicz, A. Krupa, Wear 386-387 (2017) 80-89. |
[22] |
W. Deng, Y. An, G. Hou, S. Li, H. Zhou, J. Chen, Ultrason. Sonochem. 46 (2018) 1-9.
URL PMID |
[23] | W.J. Tomlinson, N. Kalitsounakis, G. Vekinis, Ceram. Int. 25 (1999) 331-338. |
[24] | H. Sheng, Y. Wu, J. Zhang, Y. Zheng, Y. Qin, W. Gao, G. Li, Trans. Indian Inst. Met. 68 (2015) 151-159. |
[25] | C. Zhang, C. Wu, S. Zhang, Y. Jia, M. Guan, J. Tan, B. Lin, Rare Met. 1 (2016) 1-9. |
[26] | C.T. Kwok, H.C. Man, F.T. Cheng, Mater. Sci. Eng. A 303 (2016) 250-261. |
[27] | M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Surf. Coat. Technol. 201 (2006) 1289-1295. |
[28] | C.J. Lin, K.C. Chen, J.L. He, Wear 261 (2006) 1390-1396. |
[29] | Y. Wang, J. Stella, G. Darut, T. Poirier, H. Liao, M.P. Planche, J. Alloys Compd. 699 (2017) 1095-1103. |
[30] | G. Chen, H. Lou, Surf. Coat. Technol. 123 (2000) 92-96. |
[31] | ASTM G32-92, Standard Method of Vibratory Cavitation Erosion Test, Annual Book of ASTM Standards, Vol. 03.02, ASTM, Philadelphia, 1992. |
[32] | A. Leyland, A. Matthews, Surf. Coat. Technol. 177 (2004) 317-324. |
[33] | A.K. Krella, Eng. Failure Anal. 18 (2011) 855-867. |
[34] | A. Babu, H.S. Arora, H. Singh, H.S. Grewal, Wear 422-423 (2019) 242-251. |
[35] | S. Lavigne, F. Pougoum, S. Savoie, L. Martinu, J.E. Klembergsapieha, R. Schulz, Wear 386-387 (2017) 90-98. |
[36] | G.T.P. Azar, C. Yelkarasi, M. ürgen, Surf. Coat. Technol. 322 (2017) 211-217. |
[37] | S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, J.Z. Tan, Opt. Laser Technol. 84 (2016) 23-31. |
[38] | C.T. Kwok, F.T. Cheng, H.C. Man, Surf. Coat. Technol. 145 (2001) 194-205. |
[39] | K. Chiu, F. Cheng, H. Man, Mater. Sci. Eng. A 392 (2005) 348-358. |
[40] | S. Hattori, A. Tainaka, Wear 262 (2007) 191-197. |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[3] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[5] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[6] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[7] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[8] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[9] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[10] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[11] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[12] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[13] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[14] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[15] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||