J. Mater. Sci. Technol. ›› 2020, Vol. 46: 1-11.DOI: 10.1016/j.jmst.2019.11.015
• Research Article • Next Articles
Jian Yang Zhanga,b,c, Bin Xua,c, Naeemul Haq Tariqd, MingYue Suna,c,*(), DianZhong Lic, Yi Yi Lia
Received:
2019-06-08
Revised:
2019-11-10
Accepted:
2019-11-15
Published:
2020-06-01
Online:
2020-06-19
Contact:
MingYue Sun
Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. J. Mater. Sci. Technol., 2020, 46: 1-11.
Fig. 1. (a) Microstructure of IN718 treated after homogenizing at 1100 ℃ for 1 h. (b) Schematic of isothermal compression bonding tests on hot compression bonding test device. (c) Shape and dimensions of the round bar-shaped specimen for isothermal compression bonding tests. (d) Morphology diagram of the specimens after isothermal compression bonding process. (e) Area selected for observation of the microstructure of interfacial grain boundaries (IGBs). (f) Location and dimensions of the tensile test specimen.
Fig. 2. Optical microscopy images of IN718 joints under different bonding temperatures. (a) Microstructure in the bonding area at different deformation temperatures and strains. (b-e) Enlarged views of the blue dashed boxes in (a).
Fig. 3. Effects of strain and deformation temperature on (a) interfacial bonding ratio (ΨBonding) in the bonding area. (b) Method for calculating interfacial bonding ratio.
Fig. 4. Representative inverse pole figure maps of the bonding area of the joints obtained at ε = 0.50 under (a) 1000 °C, (b) 1050 °C, (c) 1100 °C, and (d) 1150 °C. Effect of deformation temperature on (e) the volume fraction of different types of grains and (f) color code.
Fig. 5. Grain boundary maps (superimposed on IQ maps) in the bonding area of the joints bonded at 1100 °C under deformation strains of: (a) 0.20, (b) 0.30, (c) 0.40, and (d) 0.50. (e, f) Enlarged views of the blue boxes marked in (a, d). (g, h) Misorientation angle (Δθ) profiles along the lines L1, L2, L3, and L4 marked in panels (e) and (f).
Fig. 6. (a, b) Inverse pole figure maps, (c, d) grain boundary maps (superimposed on IQ maps) and (e, f) kernel average misorientation maps of the bonding interface of the joints processed at 1100 °C under deformation strains of: (a, c, e) 0.20 and (b, d, f) 0.40. (g) Geometrically necessary dislocation density (ρGND) profiles along lines ‘AB’, ‘CD’, and ‘EF’ marked in panels (e) and (f).
Fig. 7. (a) TEM images showing dislocations evolution in the vicinity of the interfacial grain boundary at 1100 °C under a deformation strain of 0.10. (b) An enlarged view of the blue box marked in panel (a).
Fig. 8. (a) Room temperature tensile properties of the specimens bonded at different deformation temperatures and a deformation strain of 0.40. (b) Comparison between yield strengths (YSs), ultimate tensile strengths (UTSs), and elongations (ELs) obtained from the tensile curves in (a).
Fig. 9. SEM images of the fractured surfaces of tensile test specimens bonded at ε = 0.40 and different deformation temperatures: (a, e) 1000 ℃, (b, f) 1050 ℃, (c, g) 1100 ℃, (d, h) 1150 ℃.
Fig. 10. Schematic diagrams of DRX nucleation and growth at interfacial grain boundary. (a) Deformation generated in the initial interfacial grains. (b) A section of grain boundary bulges into the opposite side of the interfacial grain boundary to form a nucleus of dynamic recrystallization caused by strain-induced grain boundary migration (SIBM). (c) Nucleation and growth of DRXed grain in the vicinity of the interfacial grain boundary leading to a sound bonded joint.
[1] |
D. Pradhan, G.S. Mahobia, K. Chattopadhyay, V. Singh, Int. J. Fatigue 114 (2018) 120-129.
DOI URL |
[2] | J. Belan, M. Matvija, L. Kuchariková, E. Tillová, Mater. Today 5 (13) (2018) 26697-26702. |
[3] | J. Xu, Z. Huang, L. Jiang, Mater. Sci. Eng. A 690 (2017) 137-145. |
[4] |
K. Yuan, W. Guo, P. Li, J. Wang, Y. Su, X. Lin, Y. Li, Mater. Sci. Eng. A 721 (2018) 215-225.
DOI URL |
[5] | P. Guo, X. Lin, J. Li, Y. Zhang, M. Song, W. Huang, Corrosion Sci. 132(2018) 79-89. |
[6] | K.D. Ramkumar, D. Sidharth, K. V.P.Prabhakar, R. Rajendran, K.G. Mugundan, S. Narayanan, J. Mater. Process. Technol. 266(2019) 52-62. |
[7] | S. Kalpakjian, K.S. Vijai Sekar, S.R. Schmid, Manufacturing Engineering & Technology, seventh ed., Pearson, Singapore, 2014, pp. 900-916. |
[8] | B. Xie, M. Sun, B. Xu, C. Wang, D. Li, Y. Li, Mater. Des. 157(2018) 437-446. |
[9] | C. Hoppe, C. Ebbert, R. Grothe, H.C. Schmidt, I. Hordych, W. Homberg, H.J. Maier, G. Grundmeier, Adv. Eng. Mater. 18 (8) (2016) 1371-1380. |
[10] |
G. Chen, J.T. Li, H.L. Yu, L.H. Su, G.M. Xu, J.S. Pan, T. You, G. Zhang, K.M. Sun, L.Z. He, Mater. Des. 112(2016) 263-274.
DOI URL |
[11] | H.G. Huang, P. Chen, C. Ji, Mater. Des. 118(2017) 233-244. |
[12] | K. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya, CIRP Ann. 62 (2) (2013) 673-694. |
[13] | C.Y. Sun, L. Li, M.W. Fu, Q.J. Zhou, Mater. Des. 94(2016) 433-443. |
[14] |
H. Zhang, J. Li, P. Ma, J. Xiong, F. Zhang, Vacuum 152 (2018) 272-277.
DOI URL |
[15] | W. Hu, D. Ponge, G. Gottstein, Mater. Sci. Eng. A 190 (1-2) (1995) 223-229. |
[16] |
Y. Huang, N. Ridley, F.J. Humphreys, J.Z. Cui, Mater. Sci. Eng. A 266 (1) (1999) 295-302.
DOI URL |
[17] |
C. Zhang, H. Li, M.Q. Li, Sci. Technol. Weld. Join. 20 (2) (2015) 115-122.
DOI URL |
[18] | H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, Y.C. Liu, Mater. Sci. Eng. A 722 (2018) 136-146. |
[19] | H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, Y. Huang, H.J. Li, J.X. Yu, J. Alloys Compd. 716(2017) 65-72. |
[20] | Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, H.J. Li, Acta Metall. Sin. 54(2018) 1653-1664. |
[21] | Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, H.J. Li, Acta Metall. Sin. 52(2016) 1259-1266. |
[22] | Y. Wang, W.Z. Shao, L. Zhen, X.M. Zhang, Mater. Sci. Eng. A 486 (1) (2008) 321-332. |
[23] | Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloys Compd. 640(2015) 101-113. |
[24] | M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Sci. Eng. A 678 (2016) 137-152. |
[25] | B. Tang, X.S. Qi, H.C. Kou, J.S. Li, S. Milenkovic, Adv. Eng. Mater. 18 (4) (2016) 657-664. |
[26] | Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang, J. Mate. Sci. Technol. 35 (4) (2019) 591-595. |
[27] | D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, M.S. Chen, Mater. Design 154 (2018) 51-62. |
[28] | P.J. Konijnenberg, S. Zaefferer, D. Raabe, Acta Mater. 99(2015) 402-414. |
[29] | S. Ghorbanpour, M. Zecevic, A. Kumar, M. Jahedi, J. Bicknell, L. Jorgensen, I.J. Beyerlein, M. Knezevic, Int. J. Plasticity 99 (2017) 162-185. |
[30] | Metallic Materials - Tensile Testing - Part 1: Method of test at room temperature, (2010). |
[31] | M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Sci. Eng. A 678 (2016) 137-152. |
[32] | T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60(2014) 130-207. |
[33] | Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, Z.L. Long, Mater. Design 97 (2016) 13-24. |
[34] | W.D. Klopp, Aerospace Structural Metals Handbook, Ni-4100, January, 1995. |
[35] | J. Humphreys, G.S. Rohrer, A. Rohrer (Eds.) ,, in: J. Humphreys, G.S. Rohrer, A. Rollett (Eds.), Recrystallization and Related Annealing Phenomena, Third Edition, Elsevier, Oxford, 2017, pp. 245-304. |
[36] | H.S. Zurob, Y. Bréchet, J. Dunlop, Acta Mater. 54 (15) (2006) 3983-3990. |
[37] | J. Humphreys, G.S. Rohrer, A. Rohrer, in: J. Humphreys, G.S. Rohrer, A. Rollett (Eds.), Recrystallization and Related Annealing Phenomena, Third Edition, Elsevier, Oxford, 2017, pp. 13-79. |
[38] | S. Gourdet, F. Montheillet, Acta Mater. 50 (11) (2002) 2801-2812. |
[39] | T. Sakai, A. Belyakov, H. Miura, Metall. Mater. Trans. A 39A (9) (2008) 2206-2214. |
[40] |
I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 486 (1-2) (2008) 662-671.
DOI URL |
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[3] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[4] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[5] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[6] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[7] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[8] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[9] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[10] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[11] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[12] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[13] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[14] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[15] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park. A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 59(0): 37-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||