J. Mater. Sci. Technol. ›› 2020, Vol. 44: 160-170.DOI: 10.1016/j.jmst.2019.10.026
• Research Article • Previous Articles Next Articles
Dong Wanga, Guo Heb*(), Ye Tiana*(
), Ning Rena, Jiahua Nib, Wei Liuc, Xianlong Zhangc
Received:
2019-07-05
Revised:
2019-09-20
Accepted:
2019-10-12
Published:
2020-05-01
Online:
2020-05-21
Contact:
Guo He,Ye Tian
Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration[J]. J. Mater. Sci. Technol., 2020, 44: 160-170.
Fig. 2. Morphologies of the as-prepared porous titanium (a-c): pore size = 0.4 mm, porosity = 30%, 40%, and 50%, respectively, Insert: a local magnified image showing the inner surface of the pore. (d) Compressive stress-strain curves of the as-prepared porous titanium with different porosities. (e) Comparison of the compressive strength and modulus of the porous titanium with about 40% porosity fabricated by various methods. (f) Tensile stress-strain curves of the as-prepared porous titanium with different porosities. (g) Comparison of the tension strength and modulus of the porous titanium with about 40% porosity fabricated by various methods. P: porosity.
Fig. 3. Tomography images of porous titanium: (a) Matrix merged with pores, (b) Pores in titanium. The distribution of the wall thickness of porous titanium under different porosities: (c) Region in inner ring (Zone A); (d) Region in outer ring (Zone B).
Type | Compression | Tension | ||
---|---|---|---|---|
Strength (MPa) | Modulus (GPa) | Strength(MPa) | Modulus (GPa) | |
PT (30%) | 190.2 ± 12.1 | 26.5 ± 3.1 | 110.5 ± 11.4 | 48.5 ± 5.0 |
PT (40%) | 145.2 ± 13.0 | 7.9 ± 4.0 | 85.2 ± 7.3 | 21.3 ± 3.3 |
PT (50%) | 97.8 ± 9.2 | 5.7 ± 4.4 | 47.3 ± 9.2 | 18.8 ± 3.7 |
Cortical bone [ | 130 - 180 | 3 - 30 | 50 - 150 | 10 - 30 |
Table 1 Mechanical properties of human cortical bone and the porous titanium fabricated by IC-SDPS technique (PT = porous titanium, pore size 0.4 mm).
Type | Compression | Tension | ||
---|---|---|---|---|
Strength (MPa) | Modulus (GPa) | Strength(MPa) | Modulus (GPa) | |
PT (30%) | 190.2 ± 12.1 | 26.5 ± 3.1 | 110.5 ± 11.4 | 48.5 ± 5.0 |
PT (40%) | 145.2 ± 13.0 | 7.9 ± 4.0 | 85.2 ± 7.3 | 21.3 ± 3.3 |
PT (50%) | 97.8 ± 9.2 | 5.7 ± 4.4 | 47.3 ± 9.2 | 18.8 ± 3.7 |
Cortical bone [ | 130 - 180 | 3 - 30 | 50 - 150 | 10 - 30 |
Fig. 4. In vitro experiments. (a) Viability of MG63 osteoblasts in dense titanium and porous implant scaffolds with different pore size (i.e., 0.3 mm, 0.4 mm and 0.5 mm) using CCK-8 assay. (b) DNA production of MG63 osteoblast cells cultured on dense titanium and porous titanium with different pore size (i.e., 0.3 mm, 0.4 mm and 0.5 mm). (c) Viability of MG63 osteoblasts in porous titanium scaffolds with 0.4 mm pore size and dense titanium scaffolds using live/dead assay. (d) SEM images of primary osteoblast cells adhered to the porous titanium after 1 and 3 days, Insert: a local magnified image showing cells adhered on inside surface. ★p < 0.05, ★★p < 0.01 compared with control group, #p < 0.05, ##p < 0.01 compared with 0.4 mm group.
Fig. 6. (a-d) 3D reconstruction models showing the status of the implants (white in color) and new bone (yellow in color) response. (e-h) Optical micrographs (transverse section) of the porous titanium and dense titanium implanted in rabbit model after 16 weeks postoperation (black: titanium, red: bone, white: pores). d: pore diameter.
Fig. 7. Osseointegration of the porous titanium. (a) Trabecular bone volume fraction, BV/TV, and trabecular number of the new bone ingrew into the implants with different pore size. (b) New bone penetration length in the implants.
Fig. 8. Effect of density (porosity) on tensile strength of the porous titanium. The exponentials of the Gibson-Ashby equations can be determined by the best fitted lines for the data points.
[1] |
H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22 (2001) 1253-1262.
DOI URL PMID |
[2] |
S. Ferraris, A. Vitale, E. Bertone, S. Guastella, C. Cassinelli, J. Pan, S. Spriano, Mater. Sci. Eng. C 60 (2016) 384-393.
DOI URL PMID |
[3] |
H.U. Cameron, I. Macnab, R.M. Pilliar, Int. J. Artif. Organs 1 (1978) 104-109.
URL PMID |
[4] |
W.C. Head, D.J. Bauk, R.H. Emerson, Clin. Orthop. Relat. Res. 311(1995) 85-90.
URL PMID |
[5] | D.J. Jorgensen, D.C. Dunand, Acta Mater. 59(2011) 640-650. |
[6] | K. Ding, Q. Liu, Y. Bu, K. Meng, W. Wang, D. Yuan, Y. Wang, J. Alloys Compd. 657(2016) 626-630. |
[7] |
M. de Wild, R. Schumacher, K. Mayer, E. Schkommodau, D. Thoma, M. Bredell, A.K. Gujer, K.W. Gräz, F.E. Weber, Tissue Eng. Part A 19 (2013) 2645-2654.
DOI URL PMID |
[8] | A. Basalah, S. Esmaeili, E. Toyserkani, J. Mater. Process. Technol. 238(2016) 341-351. |
[9] |
T. Imwinkelried, J. Biomed. Mater. Res. A. 81(2007) 964-970.
DOI URL PMID |
[10] |
Y.H. Lee, C.J. Chung, C.W. Wang, Y.T. Peng, C.H. Chang, C.H. Chen, Y.N. Chen, C.T. Li, Comput. Biol. Med. 71(2016) 35-45.
DOI URL PMID |
[11] |
M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, S. Itsuno, N. Haraguchi, Y. Itoh, T. Ogasawara, T. Onishi, T. Shindoh, J. Mech. Behav. Biomed. Mater. 3(2010) 41-50.
DOI URL PMID |
[12] |
F. Xie, X. He, X. Lu, S. Cao, X. Qu, Mater. Sci. Eng. C 33 (2013) 1085-1090.
DOI URL PMID |
[13] |
Y.K. Ahn, H.G. Kim, H.K. Park, G.H. Kim, K.H. Jung, C.W. Lee, W.Y. Kim, S.H. Lim, B.S. Lee, Mater. Lett. 187(2017) 64-67.
DOI URL |
[14] |
F. Li, J. Li, G. Xu, G. Liu, H. Koun, L. Zhou, J. Mech. Behav. Biomed. Mater. 46(2015) 104-114.
DOI URL PMID |
[15] |
Z. Lu, Z. Huang, S. Jiang, W. Liu, K. Zhang, Metals 6 (4) (2016) 83.
DOI URL |
[16] |
H.D. Jung, S.W. Yook, T.S. Jang, Y.L. Li, H.E. Kim, Y.H. Koh, Mater. Sci. Eng. C 33 (2013) 59-63.
DOI URL PMID |
[17] |
G.E. Ryan, A.S. Pandit, D.P. Apatsidis, Biomaterials 29 (2008) 3625-3635.
DOI URL PMID |
[18] |
D. Wang, Q.Y. Li, M.Q. Xu, G.F. Jiang, Y.X. Zhang, G. He, Mater. Sci. Eng. C 71 (2017) 1046-1051.
DOI URL |
[19] |
Z. Wang, C. Wang, C. Li, Y. Qin, L. Zhong, B. Chen, Z. Li, H. Liu, F. Chang, J. Wang, J. Alloys Compd. 717(2017) 271-285.
DOI URL |
[20] |
H.J. Jeon, H. Lee, G.H. Kim, Tissue Eng. Part C Methods 20 (2014) 951-963.
DOI URL PMID |
[21] |
M. Okamoto, Y. Dohi, H. Ohgushi, H. Shimaoka, M. Ikeuchi, A. Matsushima, K. Yonemasu, H. Hosoi, J. Mater. Sci. 17(2006) 327-336.
DOI URL PMID |
[22] | L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997. |
[23] |
A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. 4(2008) 773-782.
DOI URL PMID |
[24] |
S.F. Yang, K.F. Leong, Z.H. Du, C.K. Chua, Tissue Eng. 7(2001) 679-689.
DOI URL PMID |
[25] |
D.T. Reilly, A.H. Burstein, H. Albert, J. Bone Joint Surg. 56(1974) 1001-1022.
URL PMID |
[26] | Q.B. Tan, P. Liu, C.L. Du, L.H. Wu, G. He, Mater. Sci. Eng. A 527 (2009) 38-44. |
[27] |
S.R. Kalidindi, A. Abusafieh, E. EI-Danaf, Exp. Mech. 37(1997) 210-215.
DOI URL |
[28] |
M. Cheng, Y. Qiao, Q. Wang, G. Jin, H. Qin, Y. Zhao, X. Peng, X. Zhang, X. Liu, Appl. Mater. Interf. 7(2015) 13053-13061.
DOI URL PMID |
[29] |
M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, S. Itsuno, N. Haraguchi, Y. Itoh, T. Ogasawara, T. Onishi, T. Shindoh, J. Mech. Behav. Biomed. Mater. 3(2010) 41-50.
DOI URL PMID |
[30] | T. Hayashi, K. Maekawa, M. Tamura, K. Hanyu, JSME Int. J. Ser. A 48 (2005) 369-375. |
[31] |
H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mater. Sci. Eng. A 625 (2015) 350-356.
DOI URL |
[32] |
A. El-Hajje, E.C. Kolos, J.K. Wang, S. Maleksaeedi, Z. He, F.E. Wiria, J. Mater. Sci. Mater. Med. 25(2014) 2471-2480.
DOI URL PMID |
[33] |
J.L. Dong, L.X. Li, W.D. Mu, Y.H. Wang, D.S. Zhou, J. Bioact. Compat. Pol. 25(2010) 547-566.
DOI URL |
[34] |
V.V.D. Rani, L. Vinoth-Kumar, V.C. Anitha, K. Manzoor, M. Deepthy, V.N. Shantikumar, Acta Biomater. 8(2012) 1976-1989.
DOI URL PMID |
[35] |
K. Anselme, P. Linez, M. Bigerelle, D.L. Maguer, A.L. Maguer, P. Hardouin, H.F. Hildebrand, A. Iost, J.M. Leroy, Biomaterials 21 (2000) 1567-1577.
DOI URL PMID |
[36] |
L.F. Cooper, J. Takabe, J. Guo, A. Abron, A. Holmen, J.E. Ellingsen, Biomaterials 27 (2006) 926-936.
DOI URL PMID |
[37] |
Y.T. Sul, C.B. Johansson, K. Roser, T. Albrektsson, Biomaterials 23 (2002) 1809-1817.
DOI URL PMID |
[38] |
A.F.V. Recum, C.E. Shannon, C.E. Cannon, K.J. Long, T.G.V. Kooten, J. Meyle, Tissue Eng. 2(1996) 241-253.
DOI URL PMID |
[39] | D.M. Brunette, Int. J. Oral Max.Impl. 3(1988) 1-44. |
[40] |
S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.P. Kruth, J. Schrooten, Acta Biomater. 8(2012) 2824-2834.
DOI URL PMID |
[41] |
B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao, H. Kou, Y. Zhang, Acta Biomater. 33(2016) 311-321.
DOI URL PMID |
[42] |
M. Rumpler, A. Woesz, J.W.C. Dunlop, J.T. van Dongen, P. Fratzl, J. Royal Soc. Interf. 5(2008) 1173-1180.
DOI URL |
[43] |
S. Impens, Y. Chen, S. Mullens, F. Luyten, J. Schrooten, Tissue Eng. Part C Methods 16 (2010) 1575-1583.
DOI URL PMID |
[44] |
T. Albrektsson, C. Johansson, Eur. Spine J. 10(2001) S96-S101.
DOI URL PMID |
[45] |
B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Biomaterials 27 (2006) 5892-5900.
DOI URL |
[46] |
T.M. Freyman, I.V. Yannas, L.J. Gibson, Prog. Mater. Sci. 46(2001) 273-282.
DOI URL |
[47] |
J.P. Li, P. Habibovic, M. van den Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, Biomaterials 28 (2007) 2810-2820.
DOI URL |
[48] |
W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Acta Biomater. 3(2007) 1007-1018.
DOI URL PMID |
[49] |
J. Lv, Z.J. Jia, J. Li, Y.N. Wang, J. Yang, P. Xiu, K. Zhang, H. Cai, Z. Liu, Adv. Eng. Mater. 17(2015) 1391-1398.
DOI URL |
[50] |
J. Markhoff, J. Wieding, V. Weissmann, J. Pasold, A. Jonitz-Heincke, R. Bader, Materials 8 (2015) 5490-5507.
DOI URL PMID |
[51] |
N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Mater. Sci. Eng. C 59 (2016)690-701.
DOI URL PMID |
[52] |
J.E. Biemond, R. Aquarius, N. Verdonschot, P. Buma, Arch. Orthop. Trauma Surg. 131(2011) 711-718.
DOI URL PMID |
[53] |
H.E. Gotz, M. Muller, A. Emmel, U. Holzwarth, R.G. Erben, R. Stangl, Biomaterials 25 (2004) 4057-4064.
DOI URL |
[54] |
J.P. St-Pierre, M. Gauthier, L.P. Lefebvre, M. Tabrizian, Biomaterials 26 (2005) 7319-7328.
DOI URL |
[1] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[2] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[3] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[4] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[5] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[6] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[7] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[8] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[9] | Shi Jin, Dan Zhang, Xiaopeng Lu, Yang Zhang, Lili Tan, Ying Liu, Qiang Wang. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 190-201. |
[10] | Rui Liu, Yulong Tang, Hui Liu, Lilan Zeng, Zheng Ma, Jun Li, Ying Zhao, Ling Ren, Ke Yang. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities [J]. J. Mater. Sci. Technol., 2020, 47(0): 202-215. |
[11] | Wenqiang Hu, Zhenying Huang, Qun Yu, Yuanbo Wang, Yidan Jiao, Cong Lei, Leping Cai, Hongxiang Zhai, Yang Zhou. Ti2AlC triggered in-situ ultrafine TiC/Inconel 718 composites: Microstructure and enhanced properties [J]. J. Mater. Sci. Technol., 2020, 51(0): 70-78. |
[12] | H.S. Ren, H.P. Xiong, W.M. Long, B. Chen, Y.X. Shen, S.J. Pang. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AuNi filler metal [J]. J. Mater. Sci. Technol., 2019, 35(9): 2070-2078. |
[13] | Jiajia Sun, Hejun Li, Liyuan Han, Qiang Song. Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification [J]. J. Mater. Sci. Technol., 2019, 35(3): 383-393. |
[14] | Jie Huang, Kai-Ming Zhang, Yun-Fei Jia, Cheng-Cheng Zhang, Xian-Cheng Zhang, Xian-Feng Ma, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment [J]. J. Mater. Sci. Technol., 2019, 35(3): 409-417. |
[15] | Lawrence E.Murr. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview [J]. J. Mater. Sci. Technol., 2019, 35(2): 231-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||