J. Mater. Sci. Technol. ›› 2020, Vol. 39: 99-105.DOI: 10.1016/j.jmst.2019.07.056
• Research Article • Previous Articles Next Articles
Kai Wanga, Lei Chenabc*(), Chenguang Xua, Wen Zhanga, Zhanguo Liuac, Yujin Wangac*(
), Jiahu Ouyangac, Xinghong Zhangb, Yudong Fud, Yu Zhouac
Received:
2019-05-16
Accepted:
2019-07-29
Published:
2020-02-15
Online:
2020-03-11
Contact:
Chen Lei,Wang Yujin
Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. J. Mater. Sci. Technol., 2020, 39: 99-105.
Reactions | Relationship between ΔG (kJ/mol) and T (℃) | Critical reaction temperature (℃) |
---|---|---|
ZrO2 + 3C = ZrC + 2CO | ΔG=-471.9 × 10-3T+535.757 | 1135.3 |
TiO2 + 3C = TiC + 2CO | ΔG=-461.9 × 10-3T+402.028 | 870.4 |
Ta2O5 + 7C = 2TaC + 5CO | ΔG=-1153.6 × 10-3T+844.281 | 731.9 |
Nb2O5 + 7C = 2NbC + 5CO | ΔG= -1173.1 × 10-3T+741.056 | 631.7 |
MoO3(s) + 7/2C(s) = 1/2Mo2C(s) + 3CO | ΔG=-704.6 × 10-3T+185.780 | 263.7 |
Table 1 Relationship between the difference in Gibbs free energy (ΔG) and reaction temperature (T).
Reactions | Relationship between ΔG (kJ/mol) and T (℃) | Critical reaction temperature (℃) |
---|---|---|
ZrO2 + 3C = ZrC + 2CO | ΔG=-471.9 × 10-3T+535.757 | 1135.3 |
TiO2 + 3C = TiC + 2CO | ΔG=-461.9 × 10-3T+402.028 | 870.4 |
Ta2O5 + 7C = 2TaC + 5CO | ΔG=-1153.6 × 10-3T+844.281 | 731.9 |
Nb2O5 + 7C = 2NbC + 5CO | ΔG= -1173.1 × 10-3T+741.056 | 631.7 |
MoO3(s) + 7/2C(s) = 1/2Mo2C(s) + 3CO | ΔG=-704.6 × 10-3T+185.780 | 263.7 |
Fig. 1. Characterization of the intermediate products powders: (a) XRD patterns of ball-milled powder mixture and as-synthesized powder at different temperatures; (b) enlarged XRD patterns of as-synthesized powder; (c) SEM micrographs of as-synthesized powder at 1500 ℃.
Fig. 2. Characterization of phase formation process: (a) XRD patterns of TaC, ZrC, as-synthesized carbide powder at 1500 ℃ and high-entropy ceramic; (b) Rietveld refinement of (TiZrNbTaMo)C (Fullprof, Rwp = 8.88); (c) schematic illustration showing the formation process of high-entropy ceramic (different colors represent different types of metallic atoms).
Fig. 3. XRD patterns of carbide powders and ceramics: (a) as-synthesized (Ta0.4Nb0.2Ti0.2Mo0.2)C powder; (b) (Ta0.4Nb0.2Ti0.2Mo0.2)C ceramic; (c) as-synthesized (Zr0.4Nb0.2Ti0.2Mo0.2)C powder; (d) (Zr0.4Nb0.2Ti0.2Mo0.2)C ceramic.
Fig. 4. SEM and EDS analysis of (TiZrNbTaMo)C ceramic: (a) SEM image of the polished surface, with the corresponding EDS mapping of Ti, Zr, Nb, Ta and Mo element; (b) elemental component of point as marked in (a); (c) statistical chart of grain size distribution.
Fig. 5. TEM analysis of the (TiZrNbTaMo)C ceramic: (a) HRTEM image; (b) SAED pattern; (c) the HADDF image and the corresponding EDS compositional maps.
Ceramic | Fracture toughness (MPa m1/2) | Hardness at different loads (GPa) | Reference |
---|---|---|---|
(TiZrNbTaMo)C | 3.28 ± 0.12 | 16.8 ± 1.2 (98 N) 17.9 ± 1.0 (49 N) 25.3 ± 0.3 (9.8 N) 31.3 ± 2.5 (100 mN) | This work |
(TiZrNbTaHf)C | -- | 27.5 (0.5 N) | [ |
(TiZrNbTaHf)C | -- | 32 (0.3 N) | [ |
(TiZrNbTaHf)C | -- | 15 (9.8 N) | [ |
(TiZrNbTaHf)C | 3.0 | 18.8 (9.8 N) 22.5 (0.98 N) 40 (8 mN) | [ |
(TiZrNbV)C | 4.7 | 19 (49 N) 22.5 (0.98 N) | [ |
Table 2 Hardness and fracture toughness of high-entropy (TiZrNbTaMo)C carbide ceramic for a comparative study.
Ceramic | Fracture toughness (MPa m1/2) | Hardness at different loads (GPa) | Reference |
---|---|---|---|
(TiZrNbTaMo)C | 3.28 ± 0.12 | 16.8 ± 1.2 (98 N) 17.9 ± 1.0 (49 N) 25.3 ± 0.3 (9.8 N) 31.3 ± 2.5 (100 mN) | This work |
(TiZrNbTaHf)C | -- | 27.5 (0.5 N) | [ |
(TiZrNbTaHf)C | -- | 32 (0.3 N) | [ |
(TiZrNbTaHf)C | -- | 15 (9.8 N) | [ |
(TiZrNbTaHf)C | 3.0 | 18.8 (9.8 N) 22.5 (0.98 N) 40 (8 mN) | [ |
(TiZrNbV)C | 4.7 | 19 (49 N) 22.5 (0.98 N) | [ |
|
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[4] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[5] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[6] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[7] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[8] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[9] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[10] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[11] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[12] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[13] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[14] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[15] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||