J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1378-1387.DOI: 10.1016/j.jmst.2019.03.014
• Orginal Article • Previous Articles Next Articles
L.M. Zhangab, S.D. Zhangc, A.L. Maa, A.J. Umohab, H.X. Hua, Y.G. Zhenga*(), B.J. Yangc, J.Q. Wangc*(
)
Received:
2019-01-03
Revised:
2019-02-28
Accepted:
2019-03-01
Online:
2019-07-20
Published:
2019-06-20
Contact:
Zheng Y.G.,Wang J.Q.
About author:
1These authors contributed equally to this work.
L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution[J]. J. Mater. Sci. Technol., 2019, 35(7): 1378-1387.
Fig. 1. The composition-structure map [7,14] of Al-Co-Ce based on at.% Co and at.% Ce present in solid solution Al (the selected composition region in this paper was surrounded by red dashed line and red star denotes the composition with the best GFA based on cluster stability lines model).
Fig. 2. (a) XRD patterns of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) melt-spun ribbons prepared with 35 m/s circumferential wheel speed, (b) the bright-field TEM image and the selected area electronic diffraction pattern (SEAD, inset) of the Al90Co7Ce3 melt-spun ribbon.
Nominal composition(at.%) | Al90Co7Ce3 | Al89Co7Ce4 | Al88Co7Ce5 | Al87Co7Ce6 | Al86Co7Ce7 |
---|---|---|---|---|---|
Actual composition(at.%) | Al90.01Co6.91Ce3.08 | Al88.73Co7.19Ce4.08 | Al87.51Co7.26Ce5.23 | Al87.22Co6.81Ce5.97 | Al85.90Co7.08Ce7.02 |
Table 1 Nominal composition and the actual composition of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) melt-spun ribbons.
Nominal composition(at.%) | Al90Co7Ce3 | Al89Co7Ce4 | Al88Co7Ce5 | Al87Co7Ce6 | Al86Co7Ce7 |
---|---|---|---|---|---|
Actual composition(at.%) | Al90.01Co6.91Ce3.08 | Al88.73Co7.19Ce4.08 | Al87.51Co7.26Ce5.23 | Al87.22Co6.81Ce5.97 | Al85.90Co7.08Ce7.02 |
Fig. 3. (a) The OCP curves of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) amorphous alloys in 0.6 M NaCl solution for 3600 s, (b) the statistical results of stable OCP derived from six repeated tests for Al93-xCo7Cex (x = 3, 4, 5, 6, 7) amorphous alloys.
Fig. 4. Cyclic polarization curves of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) amorphous alloys in 0.6 M NaCl solution (the arrows indicating the scanning direction).
Fig. 5. Statistical results of ipass, Epit, Erp, Ecorr derived from six repeated tests of cyclic polarization curves of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) amorphous alloys.
Fig. 7. (a) Mott-Schottky plots of five kinds of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution, (b) donor densities of passive films of Al93-xCo7Cex (x = 3, 4, 5, 6, 7) amorphous alloys.
Fig. 9. XPS spectra of (a) Al 2p, (b) Co 2p3/2, (c) Ce 3d5/2 for the passive films of Al89Co7Ce4 amorphous alloy after immersion in 0.6 M NaCl for four days, (d) the relative content of each substance.
Fig. 10. XPS spectra of (a) Al 2p, (b) Co 2p3/2, (c) Ce 3d5/2 for the passive films of Al86Co7Ce7 amorphous alloy after immersion in 0.6 M NaCl for four days, (d) the relative content of each substance.
Fig. 11. Depth profiles of Al, Co, Ce, O and Cl in the passive films formed on (a) Al89Co7Ce4 and (b) Al86Co7Ce7 amorphous alloys after immersion in 0.6 M NaCl solution for four hours. (c) and (d) are the depth profiles of Al, Co, Ce, O in the passive films formed on Al89Co7Ce4 and Al86Co7Ce7 amorphous alloys after immersion in 0.6 M NaCl for four days, respectively.
Fig. 12. Corrosion morphologies (cross sections) of (a) Al89Co7Ce4 and (b) Al86Co7Ce7 amorphous alloys after immersion in 0.6 M NaCl solution for four days.
|
[1] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[2] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[3] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[4] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[5] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[6] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[7] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[8] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
[9] | Chenxi Wang, Hui Fang, Shicheng Zhou, Xiaoyun Qi, Fanfan Niu, Wei Zhang, Yanhong Tian, Tadatomo Suga. Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices [J]. J. Mater. Sci. Technol., 2020, 46(0): 156-167. |
[10] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[11] | Jian Wang, Lanyue Cui, Yande Ren, Yuhong Zou, Jinlong Ma, Chengjian Wang, Zhongyin Zheng, Xiaobo Chen, Rongchang Zeng, Yufeng Zheng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[12] | Heng Chen, Biao Zhao, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides [J]. J. Mater. Sci. Technol., 2020, 47(0): 216-222. |
[13] | Han Yan, Meng Cai, Wen Li, Xiaoqiang Fan, Minhao Zhu. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2020, 54(0): 144-159. |
[14] | Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42(0): 163-174. |
[15] | Yingdong Zhang, Fusen Yuan, Fuzhou Han, Muhammad Ali, Wenbin Guo, Geping Li, Chengze Liu, Hengfei Gu. The influence of microtexture on the formation mechanism of nodules in Zircaloy-4 alloy tube [J]. J. Mater. Sci. Technol., 2020, 47(0): 68-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||