J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1368-1377.DOI: 10.1016/j.jmst.2019.01.019
• Orginal Article • Previous Articles Next Articles
Kai Guanab, Fanzhi Mengc1(), Pengfei Qinad, Qiang Yanga*(
), Dongdong Zhanga, Baishun Lia, Wei Suna, Shuhui Lvc, Yuanding Huange*(
), Norbert Horte, Jian Mengab
Received:
2018-12-26
Revised:
2019-01-18
Accepted:
2019-01-19
Online:
2019-07-20
Published:
2019-06-20
Contact:
Yang Qiang,Huang Yuanding
About author:
1These authors contributed equally to this work.
Kai Guan, Fanzhi Meng, Pengfei Qin, Qiang Yang, Dongdong Zhang, Baishun Li, Wei Sun, Shuhui Lv, Yuanding Huang, Norbert Hort, Jian Meng. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy[J]. J. Mater. Sci. Technol., 2019, 35(7): 1368-1377.
Alloy | Sm | Zn | Zr | Mg | Fe | Si |
---|---|---|---|---|---|---|
A | - | 0.57 | 0.45 | Bal. | 0.0014 | 0.0211 |
B | 2.04 | 0.65 | 0.53 | Bal. | 0.0023 | 0.0173 |
C | 3.33 | 0.55 | 0.46 | Bal. | 0.0015 | 0.0186 |
D | 4.87 | 0.56 | 0.56 | Bal. | 0.0018 | 0.0053 |
E | 6.31 | 0.54 | 0.51 | Bal. | 0.0019 | 0.0059 |
Table 1 Chemical composition of the presented alloys (wt%).
Alloy | Sm | Zn | Zr | Mg | Fe | Si |
---|---|---|---|---|---|---|
A | - | 0.57 | 0.45 | Bal. | 0.0014 | 0.0211 |
B | 2.04 | 0.65 | 0.53 | Bal. | 0.0023 | 0.0173 |
C | 3.33 | 0.55 | 0.46 | Bal. | 0.0015 | 0.0186 |
D | 4.87 | 0.56 | 0.56 | Bal. | 0.0018 | 0.0053 |
E | 6.31 | 0.54 | 0.51 | Bal. | 0.0019 | 0.0059 |
Fig. 2. SEM micrographs of as-cast alloys of (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E and (f) volume frequency of intermetallic compounds.
Fig. 4. BF-TEM images (a, e, i, m), corresponding SAED patterns (b, c, f, g, j, k, n, o) and EDS spectra (d, h, l, p) of as-cast alloys of (a-d) alloy B, (e-h) alloy C, (i-l) alloy D and (m-p) alloy E.
Fig. 5. SEM micrographs of as-extruded alloys of (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E and (f) stringer width and particle size of stringers as a function of Sm content.
Fig. 6. HAADF-STEM images of as-extruded samples of (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E and (f) statistic grain diameter distributions in form of histogram for DRX grains.
Fig. 9. (a) HAADF-STEM image of as-extruded alloy E, (b, c) corresponding SAED patterns and (d) EDS mappings along with (e, f) corresponding point EDS spectra.
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[3] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[4] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[5] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[6] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[7] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[8] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[9] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[10] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[11] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[12] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[13] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[14] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[15] | Liang Lan, Xinyuan Jin, Shuang Gao, Bo He, Yonghua Rong. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50(0): 153-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||