J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (5): 917-925.DOI: 10.1016/j.jmst.2018.11.023
• Orginal Article • Previous Articles Next Articles
L.M. Dua, L.W. Lana, S. Zhub, H.J. Yanga?(), X.H. Shia, P.K. Liawc, J.W. Qiaoa?(
)
Received:
2018-06-16
Accepted:
2018-09-18
Online:
2019-05-10
Published:
2019-02-20
Contact:
Yang H.J.,Qiao J.W.
About author:
1 These authors contribute equally to this paper.
L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. J. Mater. Sci. Technol., 2019, 35(5): 917-925.
Materials | Radius(mm) | Hardness(GPa) | Young’s modulus(GPa) | Poisson’s ratio |
---|---|---|---|---|
Si3N4 | 5.5 | \ | 310 | 0.26 |
Al0.25CoCrFeNi | ∞ | 2.53 | 215 | 0.287 |
Table 1 Parameters for the Si3N4 and Al0.25CoCrFeNi HEA.
Materials | Radius(mm) | Hardness(GPa) | Young’s modulus(GPa) | Poisson’s ratio |
---|---|---|---|---|
Si3N4 | 5.5 | \ | 310 | 0.26 |
Al0.25CoCrFeNi | ∞ | 2.53 | 215 | 0.287 |
Fig. 5 XPS analysis of the oxidation films on the worn surface tested at 600?°C: (a) Al element; (b) Co element; (c) Cr element; (d) Fe element; (e) Ni element; and (f) O element.
Fig. 7 SEM images of the worn surface of Al0.25CoCrFeNi HEA at different temperatures: (a) room temperature (20?°C); (b) 100?°C; (c) 200?°C; (d) 300?°C; (e) 400?°C; (f) 500?°C; and (g) 600?°C; and (h) a typical SEM image of worn ring on the sample surface.
Temperature | Al | Co | Cr | Fe | Ni | O |
---|---|---|---|---|---|---|
20?°C | ||||||
Surface | 3.6?±?0.8 | 23.4?±?2.3 | 23.9?±?7.6 | 21.3?±?2.1 | 22.2?±?3.2 | 4.9?±?1.1 |
Debris | 3.8?±?0.6 | 23.4?±?1.6 | 26.1?±?0.9 | 24.8?±?1.3 | 14.5?±?5.4 | 6.3?±?3.5 |
100°C | ||||||
Surface | 4.6?±?0.5 | 29.8?±?0.6 | 23.3?±?1.1 | 23.0?±?0.9 | 13.7?±?2.7 | 5.2?±?1.8 |
Debris | 4.2?±?1.3 | 17.7?±?0.4 | 21.5?±?2.6 | 22.4?±?9.2 | 23.5?±?8.8 | 10.4?±?3.4 |
200°C | ||||||
Surface | 5.0?±?0.3 | 23.9?±?3.2 | 21.1?±?0.8 | 20.0?±?3.8 | 22.2?±?4.5 | 7.8?±?2.7 |
Debris | 3.3?±?2.4 | 15.4?±?8.2 | 14.8?±?1.6 | 16.0?±?3.2 | 22.1?±?4.8 | 28.0?±?3.6 |
300°C | ||||||
Surface | 4.8?±?1.2 | 24.3?±?0.7 | 21.0?±?5.3 | 23.1?±?2.1 | 16.2?±?3.3 | 10.3?±?0.9 |
Debris | 3.4?±?1.2 | 15.3?±?1.5 | 11.6?±?3.2 | 12.1?±?3.3 | 11.5?±?1.6 | 44.3?±?6.6 |
400°C | ||||||
Surface | 4.4?±?0.5 | 23.2?±?1.2 | 17.1?±?0.9 | 16.0?±?2.7 | 16.7?±?0.8 | 21.9?±?2.4 |
Debris | 2.5?±?0.8 | 16.7?±?0.9 | 12.2?±?0.6 | 16.8?±?3.3 | 7.6?±?5.2 | 43.8?±?8.4 |
500℃ | ||||||
Surface | 4?±?1.6 | 18?±?1.6 | 17.5?±?2.2 | 17.2?±?2.5 | 19.5?±?1.3 | 23.2?±?6.1 |
Debris | 1.7?±?0.9 | 18.7?±?1.3 | 7.6?±?0.6 | 12.8?±?1.7 | 8.8?±?3.1 | 49.8?±?9.4 |
600°C | ||||||
Surface | 2.9?±?0.3 | 16.1?±?2.8 | 19.8?±?1.5 | 17.6?±?0.9 | 18.6?±?2.4 | 24.3?±?3.6 |
Debris | 2.7?±?0.7 | 13.1?±?1.4 | 8.5?±?1.6 | 15.7?±?0.6 | 8.8?±?3.5 | 50.6?±?7.4 |
Table 2 Chemical compositions of worn surface and wear debris of Al0.25CoCrFeNi HEA at elevated temperatures.
Temperature | Al | Co | Cr | Fe | Ni | O |
---|---|---|---|---|---|---|
20?°C | ||||||
Surface | 3.6?±?0.8 | 23.4?±?2.3 | 23.9?±?7.6 | 21.3?±?2.1 | 22.2?±?3.2 | 4.9?±?1.1 |
Debris | 3.8?±?0.6 | 23.4?±?1.6 | 26.1?±?0.9 | 24.8?±?1.3 | 14.5?±?5.4 | 6.3?±?3.5 |
100°C | ||||||
Surface | 4.6?±?0.5 | 29.8?±?0.6 | 23.3?±?1.1 | 23.0?±?0.9 | 13.7?±?2.7 | 5.2?±?1.8 |
Debris | 4.2?±?1.3 | 17.7?±?0.4 | 21.5?±?2.6 | 22.4?±?9.2 | 23.5?±?8.8 | 10.4?±?3.4 |
200°C | ||||||
Surface | 5.0?±?0.3 | 23.9?±?3.2 | 21.1?±?0.8 | 20.0?±?3.8 | 22.2?±?4.5 | 7.8?±?2.7 |
Debris | 3.3?±?2.4 | 15.4?±?8.2 | 14.8?±?1.6 | 16.0?±?3.2 | 22.1?±?4.8 | 28.0?±?3.6 |
300°C | ||||||
Surface | 4.8?±?1.2 | 24.3?±?0.7 | 21.0?±?5.3 | 23.1?±?2.1 | 16.2?±?3.3 | 10.3?±?0.9 |
Debris | 3.4?±?1.2 | 15.3?±?1.5 | 11.6?±?3.2 | 12.1?±?3.3 | 11.5?±?1.6 | 44.3?±?6.6 |
400°C | ||||||
Surface | 4.4?±?0.5 | 23.2?±?1.2 | 17.1?±?0.9 | 16.0?±?2.7 | 16.7?±?0.8 | 21.9?±?2.4 |
Debris | 2.5?±?0.8 | 16.7?±?0.9 | 12.2?±?0.6 | 16.8?±?3.3 | 7.6?±?5.2 | 43.8?±?8.4 |
500℃ | ||||||
Surface | 4?±?1.6 | 18?±?1.6 | 17.5?±?2.2 | 17.2?±?2.5 | 19.5?±?1.3 | 23.2?±?6.1 |
Debris | 1.7?±?0.9 | 18.7?±?1.3 | 7.6?±?0.6 | 12.8?±?1.7 | 8.8?±?3.1 | 49.8?±?9.4 |
600°C | ||||||
Surface | 2.9?±?0.3 | 16.1?±?2.8 | 19.8?±?1.5 | 17.6?±?0.9 | 18.6?±?2.4 | 24.3?±?3.6 |
Debris | 2.7?±?0.7 | 13.1?±?1.4 | 8.5?±?1.6 | 15.7?±?0.6 | 8.8?±?3.5 | 50.6?±?7.4 |
Fig. 8 Friction coefficient of Al0.25CoCrFeNi HEA vs. sliding time under different test temperatures: (a) room temperature (20?°C); (b) 100?°C; (c) 200?°C; (d) 300?°C; (e) 400?°C; (f) 500?°C; and (g) 600?°C. (h) Variations of the friction coefficient with the temperatures.
|
[1] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[6] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[7] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[12] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[13] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[14] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[15] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||