J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (5): 852-857.DOI: 10.1016/j.jmst.2018.09.027
• Orginal Article • Previous Articles Next Articles
Jingbo Huab, Changqing Fangab?(
), Shisheng Zhouabc, Youliang Chengb, Hanzhi Hanb
Received:2018-04-17
Accepted:2018-05-18
Online:2019-05-10
Published:2019-02-20
Contact:
Fang Changqing
About author:1 These authors contribute equally to this paper.
Jingbo Hu, Changqing Fang, Shisheng Zhou, Youliang Cheng, Hanzhi Han. Microstructure characterization and thermal properties of the waste-styrene-butadiene-rubber (WSBR)-modified petroleum-based mesophase asphalt[J]. J. Mater. Sci. Technol., 2019, 35(5): 852-857.
| Penetration degree (25?°C, 100?g/ 0.1?mm) | Softening point (°C) | Ductility (cm) |
|---|---|---|
| 86.13 | 51.25 | >200 |
Table 1 Properties of base asphalt.
| Penetration degree (25?°C, 100?g/ 0.1?mm) | Softening point (°C) | Ductility (cm) |
|---|---|---|
| 86.13 | 51.25 | >200 |
Fig. 3 WSBR-modified mesophase asphalt at room temperature (a) ((1) MMA0-420 (2) MMA10-420 (3) MMA20-420 (4) MMA0-450 (5) MMA10-450 (6) MMA20-440) and powder of WSBR-modified mesophase asphalt (b).
| Code | WSBR content (wt%) | Holding temperature (°C) | Holding time (h) |
|---|---|---|---|
| MMA0-420 MMA10-420 MMA20-420 MMA0-450 MMA10-450 MMA20-450 | 0 10 20 0 10 20 | 420 420 420 450 450 450 | 10 10 10 10 10 10 |
Table 2 Preparation parameters of base asphalt and WSBR-modified mesophase asphalt.
| Code | WSBR content (wt%) | Holding temperature (°C) | Holding time (h) |
|---|---|---|---|
| MMA0-420 MMA10-420 MMA20-420 MMA0-450 MMA10-450 MMA20-450 | 0 10 20 0 10 20 | 420 420 420 450 450 450 | 10 10 10 10 10 10 |
| Code | ID/IG | Peak width (1600?cm-1) |
|---|---|---|
| MMA0-420 | 2.26 | 83.1 |
| MMA10-420 | 2.40 | 90.5 |
| MMA20-420 | 2.47 | 92.5 |
| MMA0-450 | 2.32 | 92.0 |
| MMA10-450 | 2.51 | 93.0 |
| MMA20-450 | 2.56 | 93.6 |
Table 3 Results of ID/IG and peak width of the WSBR-modified mesophase asphalt.
| Code | ID/IG | Peak width (1600?cm-1) |
|---|---|---|
| MMA0-420 | 2.26 | 83.1 |
| MMA10-420 | 2.40 | 90.5 |
| MMA20-420 | 2.47 | 92.5 |
| MMA0-450 | 2.32 | 92.0 |
| MMA10-450 | 2.51 | 93.0 |
| MMA20-450 | 2.56 | 93.6 |
| Code | 2θ (deg.) | d002 (nm) | Lc (nm) | Og |
|---|---|---|---|---|
| MMA0-420 | 26 | 0.3421 | 2.52 | 0.9891 |
| MMA10-420 | 25.466 | 0.3494 | 2.69 | 0.9898 |
| MMA20-420 | 25.442 | 0.3497 | 2.69 | 0.9898 |
| MMA0-450 | 25.254 | 0.3522 | 2.71 | 0.9899 |
| MMA10-450 | 24.840 | 0.3581 | 2.79 | 0.9901 |
| MMA20-450 | 24.740 | 0.3595 | 2.73 | 0.9899 |
Table 4 Lattice parameters of the WSBR-modified mesophase asphalt.
| Code | 2θ (deg.) | d002 (nm) | Lc (nm) | Og |
|---|---|---|---|---|
| MMA0-420 | 26 | 0.3421 | 2.52 | 0.9891 |
| MMA10-420 | 25.466 | 0.3494 | 2.69 | 0.9898 |
| MMA20-420 | 25.442 | 0.3497 | 2.69 | 0.9898 |
| MMA0-450 | 25.254 | 0.3522 | 2.71 | 0.9899 |
| MMA10-450 | 24.840 | 0.3581 | 2.79 | 0.9901 |
| MMA20-450 | 24.740 | 0.3595 | 2.73 | 0.9899 |
| Structure Type | Optical Characteristics | |
|---|---|---|
| Isotropic | No optical activity (exist in mesophase asphalt with mesophase content <100%) | |
| Mosaic | Fine MosaicMedium MosaicCoarse Mosaic | Anisotropic crystal radius<1.5μmAnisotropic crystal radius 1.5-5.0μmAnisotropic crystal radius 5.0-10.0μm |
| Streamline | Medium StreamlineCoarse StreamlineWide-area Streamline | Anisotropic crystal length<30?μm, width<5μmAnisotropic crystal length 30-60?μm, width 5-10μmAnisotropic crystal length>60?μm, width>10μm |
| Wide-area | Anisotropic crystal radius>60?μm | |
Table 5 Mesophase structure types.
| Structure Type | Optical Characteristics | |
|---|---|---|
| Isotropic | No optical activity (exist in mesophase asphalt with mesophase content <100%) | |
| Mosaic | Fine MosaicMedium MosaicCoarse Mosaic | Anisotropic crystal radius<1.5μmAnisotropic crystal radius 1.5-5.0μmAnisotropic crystal radius 5.0-10.0μm |
| Streamline | Medium StreamlineCoarse StreamlineWide-area Streamline | Anisotropic crystal length<30?μm, width<5μmAnisotropic crystal length 30-60?μm, width 5-10μmAnisotropic crystal length>60?μm, width>10μm |
| Wide-area | Anisotropic crystal radius>60?μm | |
|
| [1] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
| [2] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
| [3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [5] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
| [6] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [7] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
| [8] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [9] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
| [10] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
| [11] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
| [12] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
| [13] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
| [14] | Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45(0): 49-58. |
| [15] | P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems [J]. J. Mater. Sci. Technol., 2020, 45(0): 215-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
