J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (1): 201-206.DOI: 10.1016/j.jmst.2018.09.025
• Orginal Article • Previous Articles Next Articles
Aleksandr V. Korchuganova, Aleksandr N. Tyumentsevab, Konstantin P. Zolnikova, Igor Yu. Litovchenkoab, Dmitrij S. Kryzhevicha, Elazar Gutmanasc, Shouxin Lid, Zhongguang Wangd, Sergey G. Psakhiea*()
Received:
2018-03-21
Revised:
2018-05-16
Accepted:
2018-07-09
Online:
2019-01-04
Published:
2019-01-15
Contact:
G. Psakhie Sergey
Aleksandr V. Korchuganov, Aleksandr N. Tyumentsev, Konstantin P. Zolnikov, Igor Yu. Litovchenko, Dmitrij S. Kryzhevich, Elazar Gutmanas, Shouxin Li, Zhongguang Wang, Sergey G. Psakhie. Nucleation of dislocations and twins in fcc nanocrystals: Dynamics of structural transformations[J]. J. Mater. Sci. Technol., 2019, 35(1): 201-206.
Fig. 1. Loading scheme of the simulated nanocrystal. The tension direction is shown by arrows, blue and red spheres are atoms of two (111) planes which will contain a stacking fault, and the red frame is a fragment for analyzing atomic rearrangements due to a partial dislocation passing through it.
Fig. 2. Stacking fault propagation in the loaded crystallite. Projection of two (111) atomic planes at (a) 10?ps and (b) 50?ps with the indication of atoms whose immediate surrounding belongs to fcc (blue), hcp (cyan), bcc (black), and uncertain lattice type (red). Elementary lattice cells in the plane of stacking fault propagation (с).
Fig. 3. Atomic rearrangements during fcc→bcc→hcp transformations according to the molecular dynamics simulation. Crystallite fragments at (a) 0?ps, (b) 0.15?ps, (c) 0.20?ps, and (d) 0.25?ps with the indication of atoms whose immediate surrounding belongs to fcc (blue), hcp (cyan), bcc (black), and uncertain lattice type (red). bp = а6/6 corresponds to the shear induced by a Shockley dislocation (b = (а/6) [12?1]).
Fig. 5. Atomic rearrangements during fcc→bcc→hcp transformations according to the geometrical model. Atomic configurations at different stages of transformations localized in two adjacent slip planes and responsible for the formation of a Shockley dislocation: (a) initial; (b) after tension-compression and shear during direct transformation; (c) after reverse transformation. The atomic configurations in the left column are in the section parallel to the (111) slip plane, and those in the middle column are in the section parallel to the (101?) plane, which is perpendicular to the slip plane and contains a Burgers vector, and the right column represents a 3D view of atomic configurations. The color of atoms corresponds to fcc (blue), hcp (cyan), and bcc (red) symmetry of local environment.
Material | Shear modulus, G (MPa) | Young’s modulus, E (MPa) | γ (J/m2) | 2γ/b (MPa) | 2γ/b |
---|---|---|---|---|---|
Au | 24 000 | 69 000 | 5?×?10-2 | 685 | E/100 G/35 |
Cu | 40 000 | 110 000 | 7.3?×?10-2 | 1 000 | E/110 G/40 |
Al | 26 000 | 70 000 | 20?×?10-2 | 2 740 | E/25 G/10 |
Ni | 78 000 | 200 000 | 40?×?10-2 | 5 480 | E/36 G/14 |
Table 1 Theoretical estimates of stacking fault energies and stresses for changes in deformation mechanism.
Material | Shear modulus, G (MPa) | Young’s modulus, E (MPa) | γ (J/m2) | 2γ/b (MPa) | 2γ/b |
---|---|---|---|---|---|
Au | 24 000 | 69 000 | 5?×?10-2 | 685 | E/100 G/35 |
Cu | 40 000 | 110 000 | 7.3?×?10-2 | 1 000 | E/110 G/40 |
Al | 26 000 | 70 000 | 20?×?10-2 | 2 740 | E/25 G/10 |
Ni | 78 000 | 200 000 | 40?×?10-2 | 5 480 | E/36 G/14 |
|
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Zhaohui Shan, Jing Bai, Jianfeng Fan, Hongfei Wu, Hua Zhang, Qiang Zhang, Yucheng Wu, Weiguo Li, Hongbiao Dong, Bingshe Xu. Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT [J]. J. Mater. Sci. Technol., 2020, 51(0): 111-118. |
[3] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[4] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[5] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[6] | Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 36(0): 65-69. |
[7] | Xin Zhang, Hongwei Li, Mei Zhan, Zebang Zheng, Jia Gao, Guangda Shao. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36(0): 79-83. |
[8] | Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 45(0): 207-214. |
[9] | C.Q. Liu, C. He, H.W. Chen, J.F. Nie. Precipitation on stacking faults in Mg-9.8wt%Sn alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 230-240. |
[10] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[11] | Shihao Li, Ning Gao, Weizhong Han. In-situ study of initiation and extension of nano-thick defect-free channels in irradiated nickel [J]. J. Mater. Sci. Technol., 2020, 58(0): 114-119. |
[12] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[13] | Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation [J]. J. Mater. Sci. Technol., 2020, 41(0): 209-218. |
[14] | Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2020, 41(0): 127-138. |
[15] | Jing Fan, Wei Rao, Junwei Qiao, P.K. Liaw, Daniel Şopu, Daniel Kiener, Jürgen Eckert, Guozheng Kang, Yucheng Wu. Achieving work hardening by forming boundaries on the nanoscale in a Ti-based metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2020, 50(0): 192-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||