J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (10): 1823-1834.DOI: 10.1016/j.jmst.2017.12.016
Special Issue: Corrosion in 2018; Stainless Steel & High Strength Steel 2018
• Orginal Article • Previous Articles Next Articles
Cheng Maab, Qunjia Penga(), Jinna Meic, En-Hou Hana, Wei Kea
Received:
2017-05-02
Revised:
2017-07-26
Accepted:
2017-08-31
Online:
2018-10-05
Published:
2018-11-01
Cheng Ma, Qunjia Peng, Jinna Mei, En-Hou Han, Wei Ke. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint[J]. J. Mater. Sci. Technol., 2018, 34(10): 1823-1834.
C | Si | Mn | Mo | Ni | Cr | Fe | |
---|---|---|---|---|---|---|---|
316L | 0.025 | 0.52 | 1.71 | 2.4 | 11.7 | 17.9 | Bal. |
308L | <0.3 | 0.35 | 0.9 | - | 11 | 20 | Bal. |
Table 1 Chemical composition (wt%) of the base and weld metals of the weld joint.
C | Si | Mn | Mo | Ni | Cr | Fe | |
---|---|---|---|---|---|---|---|
316L | 0.025 | 0.52 | 1.71 | 2.4 | 11.7 | 17.9 | Bal. |
308L | <0.3 | 0.35 | 0.9 | - | 11 | 20 | Bal. |
Fig 1. Schematic drawing showing the geometry of the weld joint. The red squares denoting the locations of the three specimens for corrosion and EBSD analysis. The purple lines denoting two plate-type specimens for the TEM analysis extracted in the HAZ with an orientation parallel to the fusion boundary.
Reflection plane (hkl) | Fe3O4, 2θ (deg.) | NiFe2O4, 2θ (deg.) |
---|---|---|
2 2 0 | 30.092 | 30.102 |
3 1 1 | 35.451 | 35.460 |
2 2 2 | 37.072 | 37.101 |
4 0 0 | 43.086 | 43.095 |
Table 2 Indexed spinel oxide diffraction peaks analyzed on the oxide scale formed on the 316L stainless steel specimens.
Reflection plane (hkl) | Fe3O4, 2θ (deg.) | NiFe2O4, 2θ (deg.) |
---|---|---|
2 2 0 | 30.092 | 30.102 |
3 1 1 | 35.451 | 35.460 |
2 2 2 | 37.072 | 37.101 |
4 0 0 | 43.086 | 43.095 |
Fig. 10. XPS depth profiles of the oxide scales formed on the HAZ of the three specimens following the exposure in high temperature water. The dash line refers to the interface between the oxide and the substrate. The black left axis is atomic concentration of [Cr, Fe or Ni/(Cr + Fe + Ni)]. The red right axis is atomic concentration of [O/(O+ Cr + Fe + Ni)].
Fig. 15. TEM observation of the cross-section of the oxide scale formed on the HAZ region of 316L SS following the 500 h exposure in high temperature water. (a) Pictures showing the area analyzed; (b) EDX mappings for Fe, O, Cr and Ni, respectively; (c, d) EDX compositional profiles along the brown lines presented in (a), The left axis is atomic concentration of [O/(O+ Cr + Fe + Ni)], the right axis is atomic concentration of [Cr, Fe or Ni/(Cr + Fe + Ni)].
Point | O (at.%) | Cr (at.%) | Fe (at.%) | Ni (at.%) | Spinel stoichiometry |
---|---|---|---|---|---|
point I (outer) | 57.14 | 0.61 | 40.32 | 1.92 | (Ni0.14Fe0.86)Fe2O4 |
point II (outer) | 60.39 | 0.82 | 30.13 | 8.66 | (Ni0.67Fe0.33)Fe2O4 |
point III (inner) | 63.69 | 19.85 | 12.69 | 3.77 | (Ni0.48Fe0.52)(Fe0.46Cr0.53)2O4 |
Table 3 Results of the EDX point analysis of the oxide scale shown in Fig. 15 and the calculated stoichiometry of the spinel oxide.
Point | O (at.%) | Cr (at.%) | Fe (at.%) | Ni (at.%) | Spinel stoichiometry |
---|---|---|---|---|---|
point I (outer) | 57.14 | 0.61 | 40.32 | 1.92 | (Ni0.14Fe0.86)Fe2O4 |
point II (outer) | 60.39 | 0.82 | 30.13 | 8.66 | (Ni0.67Fe0.33)Fe2O4 |
point III (inner) | 63.69 | 19.85 | 12.69 | 3.77 | (Ni0.48Fe0.52)(Fe0.46Cr0.53)2O4 |
Fig. 16. Schematic showing the dislocation-accelerated diffusion behavior (a) and the influence of diffusion on the formation of the oxide scale in the top and root areas at the early stage (b) and latter stage (c) of the oxidation.
|
[1] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[2] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[3] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[4] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[5] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[6] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[7] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[8] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[9] | Fangqiang Ning, Jibo Tan, Xinqiang Wu. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water [J]. J. Mater. Sci. Technol., 2020, 47(0): 76-87. |
[10] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[11] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[12] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
[13] | Chenxi Wang, Hui Fang, Shicheng Zhou, Xiaoyun Qi, Fanfan Niu, Wei Zhang, Yanhong Tian, Tadatomo Suga. Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices [J]. J. Mater. Sci. Technol., 2020, 46(0): 156-167. |
[14] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[15] | Jian Wang, Lanyue Cui, Yande Ren, Yuhong Zou, Jinlong Ma, Chengjian Wang, Zhongyin Zheng, Xiaobo Chen, Rongchang Zeng, Yufeng Zheng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||