J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (8): 1325-1336.DOI: 10.1016/j.jmst.2017.11.025
Special Issue: Corrosion in 2018; Stainless Steel & High Strength Steel 2018; Biomaterials 2018
• Orginal Article • Previous Articles Next Articles
Dake Xuabc, Enze Zhoua, Ying Zhaod, Huabing Lie, Zhiyong Liub, Dawei Zhangb(), Chunguang Yangc(
), Hai Linb, Xiaogang Lib, Ke Yangc
Received:
2017-04-25
Revised:
2017-06-21
Accepted:
2017-06-30
Online:
2018-08-17
Published:
2018-08-22
Dake Xu, Enze Zhou, Ying Zhao, Huabing Li, Zhiyong Liu, Dawei Zhang, Chunguang Yang, Hai Lin, Xiaogang Li, Ke Yang. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms[J]. J. Mater. Sci. Technol., 2018, 34(8): 1325-1336.
Sample | Si | Mn | C | P | S | Ni | Cr | Mo | Cu | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
2205-Cu DSS | 0.04 | 0.01 | 0.005 | 0.006 | 0.0034 | 6.03 | 23.63 | 2.90 | 3.02 | 0.23 | Bal. |
2205 DSS | 0.51 | 1.14 | 0.039 | 0.030 | 0.001 | 5.89 | 23.22 | 3.10 | - | 0.17 | Bal. |
Table 1 Chemical composition of 2205-Cu DSS and 2205 DSS (wt%).
Sample | Si | Mn | C | P | S | Ni | Cr | Mo | Cu | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
2205-Cu DSS | 0.04 | 0.01 | 0.005 | 0.006 | 0.0034 | 6.03 | 23.63 | 2.90 | 3.02 | 0.23 | Bal. |
2205 DSS | 0.51 | 1.14 | 0.039 | 0.030 | 0.001 | 5.89 | 23.22 | 3.10 | - | 0.17 | Bal. |
Fig. 1. Microstructures of 2205-Cu DSS after solution treatment at 1050 °C (a), solution treatment at 1050 °C and aging treatment at 540 °C for 4 h (b).
Phase | Solution treatment | Solution + aging treatment |
---|---|---|
α | 51.92 ± 0.06 | 43.82 ± 0.08 |
γ | 48.08 ± 0.06 | 56.18 ± 0.08 |
Table 2 Volume fraction (%) of phases of 2205-Cu DSS after solution treatment at 1050 °C, and aging treatment at 540 °C for 4 h.
Phase | Solution treatment | Solution + aging treatment |
---|---|---|
α | 51.92 ± 0.06 | 43.82 ± 0.08 |
γ | 48.08 ± 0.06 | 56.18 ± 0.08 |
Sample | δs (MPa) | δb (MPa) | σ (%) | ψ (%) | H (HV) |
---|---|---|---|---|---|
a | 540 | 770 | 76 | 38 | 380 |
b | 636 | 886 | 74 | 32 | 471 |
c | 571 | 810 | 77 | 30 | 369 |
Table 3 Mechanical properties of regular 2205 DSS (a), 2205-Cu DSS after solution treatment at 1050 °C and aging treatment at 540 °C for 4 h (b) and 2205-Cu DSS after solution treatment at 1050 °C (c).
Sample | δs (MPa) | δb (MPa) | σ (%) | ψ (%) | H (HV) |
---|---|---|---|---|---|
a | 540 | 770 | 76 | 38 | 380 |
b | 636 | 886 | 74 | 32 | 471 |
c | 571 | 810 | 77 | 30 | 369 |
Fig. 2. Variations of Eocp with exposure time for 2205 DSS and 2205-Cu DSS coupons in sterile medium and in the presence of P. aeruginosa in 2216E medium at 30 °C.
Fig. 4. Nyquist and Bode plots of 2205 DSS and 2205-Cu DSS coupons with and without exposure to P. aeruginosa in 2216E medium at 30 °C: (a, a’) 2205-Cu DSS in the medium inoculated with P. aeruginosa, (b, b’) 2205 DSS in the medium inoculated with P. aeruginosa, (c, c’) 2205 DSS in the uninoculated medium; (d, d’) 2205-Cu DSS in the uninoculated medium (f: frequency; Z’: real part of impedance; Z”: imaginary part of impedance; |Z|: impedance).
Fig. 5. Equivalent physical models and corresponding circuit models used for fitting experimental impedance diagrams of coupons in abiotic medium (a) and P. aeruginosa broth (b).
Time | Rs | Cp | Rp | Cb | Rb | Cdl | Rct |
---|---|---|---|---|---|---|---|
(Ω cm2) | (μF cm-2) | (Ω cm2) | (μF cm-2) | (Ω cm2) | (μF cm-2) | (Ω cm2) | |
2205-Cu DSS in the presence of P. aeruginosa | |||||||
1 d | 8.01 | - | - | 25.26 | 1166.0 | 41.16 | 1.68 × 105 |
7 d | 7.30 | - | - | 13.46 | 831.5 | 23.85 | 1.36 × 105 |
14 d | 9.42 | - | - | 57.63 | 340.4 | 25.01 | 4.79 × 105 |
2205 DSS in the presence of P. aeruginosa | |||||||
1 d | 7.86 | - | - | 27.16 | 993.5 | 94.40 | 8.31 × 104 |
7 d | 9.32 | - | - | 20.88 | 442.6 | 83.83 | 6.78 × 104 |
14 d | 8.40 | - | - | 13.70 | 340.3 | 74.73 | 5.67 × 104 |
2205 DSS in the uninoculated medium | |||||||
1 d | 12.15 | 27.79 | 1.109 × 105 | - | - | - | - |
7 d | 15.60 | 21.72 | 3.447 × 105 | - | - | - | - |
14 d | 14.54 | 14.29 | 2.868 × 105 | - | - | - | - |
2205-Cu DSS in the uninoculated medium | |||||||
1 d | 9.83 | 28.55 | 8.574 × 104 | - | - | - | - |
7 d | 8.47 | 15.28 | 2.543 × 105 | - | - | - | - |
14 d | 9.48 | 10.10 | 4.328 × 105 | - | - | - | - |
Table 4 EIS parameters of 2205 and 2205-Cu DSS in sterile medium and in the presence of P. aeruginosa.
Time | Rs | Cp | Rp | Cb | Rb | Cdl | Rct |
---|---|---|---|---|---|---|---|
(Ω cm2) | (μF cm-2) | (Ω cm2) | (μF cm-2) | (Ω cm2) | (μF cm-2) | (Ω cm2) | |
2205-Cu DSS in the presence of P. aeruginosa | |||||||
1 d | 8.01 | - | - | 25.26 | 1166.0 | 41.16 | 1.68 × 105 |
7 d | 7.30 | - | - | 13.46 | 831.5 | 23.85 | 1.36 × 105 |
14 d | 9.42 | - | - | 57.63 | 340.4 | 25.01 | 4.79 × 105 |
2205 DSS in the presence of P. aeruginosa | |||||||
1 d | 7.86 | - | - | 27.16 | 993.5 | 94.40 | 8.31 × 104 |
7 d | 9.32 | - | - | 20.88 | 442.6 | 83.83 | 6.78 × 104 |
14 d | 8.40 | - | - | 13.70 | 340.3 | 74.73 | 5.67 × 104 |
2205 DSS in the uninoculated medium | |||||||
1 d | 12.15 | 27.79 | 1.109 × 105 | - | - | - | - |
7 d | 15.60 | 21.72 | 3.447 × 105 | - | - | - | - |
14 d | 14.54 | 14.29 | 2.868 × 105 | - | - | - | - |
2205-Cu DSS in the uninoculated medium | |||||||
1 d | 9.83 | 28.55 | 8.574 × 104 | - | - | - | - |
7 d | 8.47 | 15.28 | 2.543 × 105 | - | - | - | - |
14 d | 9.48 | 10.10 | 4.328 × 105 | - | - | - | - |
Time (d) | 7 | 12 | 13 | 14 |
---|---|---|---|---|
ηp (%) | N/A | N/A | N/A | 89 |
ηR (%) | 57 | 67 | 81 | 88 |
Table 5 Inhibition efficiency of 2205-Cu DSS in the presence of P. aeruginosa (ηp was calculated according to the icorr of 2205 DSS in the presence of P. aeruginosa; ηR was calculated according to the Rct of 2205 DSS in the presence of P. aeruginosa).
Time (d) | 7 | 12 | 13 | 14 |
---|---|---|---|---|
ηp (%) | N/A | N/A | N/A | 89 |
ηR (%) | 57 | 67 | 81 | 88 |
icorr (μA cm-2) | Ecorr (V vs SCE) | Epit (V vs SCE) | |
---|---|---|---|
2205 DSS in the sterile medium | 0.046 | -0.560 | 1.089 |
2205 DSS in the presence of P. aeruginosa | 0.106 | -0.390 | 1.018 |
2205-Cu DSS in the presence of P. aeruginosa | 0.011 | -0.259 | 1.002 |
2205-Cu DSS in the sterile medium | 0.025 | -0.203 | 0.839 |
Table 6 Polarization parameters of 2205 and 2205-Cu DSS in sterile medium and in the presence of P. aeruginosa (icorr: corrosion current density; Ecorr: corrosion potential; Epit: pitting potential).
icorr (μA cm-2) | Ecorr (V vs SCE) | Epit (V vs SCE) | |
---|---|---|---|
2205 DSS in the sterile medium | 0.046 | -0.560 | 1.089 |
2205 DSS in the presence of P. aeruginosa | 0.106 | -0.390 | 1.018 |
2205-Cu DSS in the presence of P. aeruginosa | 0.011 | -0.259 | 1.002 |
2205-Cu DSS in the sterile medium | 0.025 | -0.203 | 0.839 |
Fig. 8. Representative SEM images of biofilm on different coupon surfaces in 2216E medium at 30 °C for 2205 (a, c) and 2205-Cu (b, d) DSS in the presence of P. aeruginosa after 7 d (a, b) and 14 d (c, d) (The insets show the enlarged views).
Sample | Duration (d) | Largest biofilm thickness (μm) | Average biofilm thickness (μm) |
---|---|---|---|
2205 DSS | 7 | 39.3 | 31.0 ± 5.1 |
14 | 26.3 | 21.4 ± 3.0 | |
2205-Cu DSS | 7 | 24.3 | 22.1 ± 1.9 |
14 | 20.9 | 17.7 ± 2.1 |
Table 7 Biofilm thickness on 2205 and 2205-Cu coupon surface in the P. aeruginosa broth for 7 and 14 d.
Sample | Duration (d) | Largest biofilm thickness (μm) | Average biofilm thickness (μm) |
---|---|---|---|
2205 DSS | 7 | 39.3 | 31.0 ± 5.1 |
14 | 26.3 | 21.4 ± 3.0 | |
2205-Cu DSS | 7 | 24.3 | 22.1 ± 1.9 |
14 | 20.9 | 17.7 ± 2.1 |
Fig. 10. Pit profile of the largest pit measured by CLSM on (a) 2205 DSS and (b) 2205-Cu DSS surface incubated in 2216E medium with P. aeruginosa for 14 d.
Sample | Largest pit depth (μm) | Average pit depth (μm) |
---|---|---|
2205-Cu DSS | 2.2 | 1.4 ± 0.4 |
2205 DSS | 12.5 | 4.8 ± 3.6 |
Table 8 Pit depths measured by CLSM on 2205 DSS and 2205-Cu DSS surface inoculated with P. aeruginosa for 14 d.
Sample | Largest pit depth (μm) | Average pit depth (μm) |
---|---|---|
2205-Cu DSS | 2.2 | 1.4 ± 0.4 |
2205 DSS | 12.5 | 4.8 ± 3.6 |
Fig. 11. Stochastic probability for pit depth of 2205 DSS and 2205-Cu DSS surface inoculated in 2216E medium with P. aeruginosa for 14 d: (a) cumulative probability plots showing the pit of a certain depth; (b) Gumbel probability plots; (c) pit probability.
Sample | Cl | C | N | O | Cr | Fe | Cu | Mg |
---|---|---|---|---|---|---|---|---|
2205-Cu DSS (7 d) | 16.70 | 27.70 | 3.46 | 48.10 | 0.25 | 0.36 | 0.22 | 3.30 |
2205 DSS (7 d) | 1.98 | 40.00 | 6.16 | 42.60 | 0 | 0 | - | 3.79 |
2205-Cu DSS (14 d) | 5.97 | 35.30 | 3.47 | 44.10 | 0.68 | 0.89 | 0.45 | 3.99 |
2205 DSS (14 d) | 2.51 | 58.60 | 6.37 | 26.30 | 0.20 | 0.22 | - | 2.11 |
Table 9 Relative atomic concentrations of main elements (at.%) of 2205-Cu DSS and 2205 DSS in the P. aeruginosa inoculated medium after 7 d and 14 d immersion.
Sample | Cl | C | N | O | Cr | Fe | Cu | Mg |
---|---|---|---|---|---|---|---|---|
2205-Cu DSS (7 d) | 16.70 | 27.70 | 3.46 | 48.10 | 0.25 | 0.36 | 0.22 | 3.30 |
2205 DSS (7 d) | 1.98 | 40.00 | 6.16 | 42.60 | 0 | 0 | - | 3.79 |
2205-Cu DSS (14 d) | 5.97 | 35.30 | 3.47 | 44.10 | 0.68 | 0.89 | 0.45 | 3.99 |
2205 DSS (14 d) | 2.51 | 58.60 | 6.37 | 26.30 | 0.20 | 0.22 | - | 2.11 |
Fig. 12. High resolution spectra of Cl 2p for 2205 DSS and 2205-Cu DSS with exposure to P. aeruginosa after 7 d (a) and 14 d (b) of incubation in 2216E medium.
|
[1] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[2] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[3] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[4] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[5] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[6] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[7] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[8] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[9] | M. Saleem Khan, Zhong Li, Ke Yang, Dake Xu, Chunguang Yang, Dan Liu, Yassir Lekbach, Enze Zhou, Phuri Kalnaowakul. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2019, 35(1): 216-222. |
[10] | Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491. |
[11] | Xuequn Cheng, Yi Wang, Xiaogang Li, Chaofang Dong. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2140-2148. |
[12] | Xinrui Zhang, Jinlong Zhao, Tong Xi, M. Babar Shahzad, Chunguang Yang, Ke Yang. Dissolution and repair of passive film on Cu-bearing 304L stainless steels immersed in H2SO4 solution [J]. J. Mater. Sci. Technol., 2018, 34(11): 2149-2159. |
[13] | Ming Wang, Ting Xu, Yanli Zhu, Wenhong Yin, Hong Guo, Ertuan Zhao, Xiaoying Fang, Weiguo Wang. Evolution of interface character distribution in duplex stainless steel processed by cross-rolling and annealing [J]. J. Mater. Sci. Technol., 2018, 34(11): 2160-2166. |
[14] | Yingchao Li, Dake Xu, Changfeng Chen, Xiaogang Li, Ru Jia, Dawei Zhang, Wolfgang Sand, Fuhui Wang, Tingyue Gu. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34(10): 1713-1718. |
[15] | Zheng Ma, Ling Ren, M. Babar Shahzad, Rui Liu, Ying Zhao, Ke Yang. Hot deformation behavior of Cu-bearing antibacterial titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1867-1875. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||