J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (1): 79-89.DOI: .10.1016/j.jmst.2016.08.016
• Orginal Article • Previous Articles Next Articles
Kang Y.H.1,2,Yan H.1,Chen R.S.1
Received:
2016-03-03
Accepted:
2016-07-07
Online:
2017-01-20
Published:
2017-02-14
Kang Y.H.,Yan H.,Chen R.S.. Creep Behavior and Microstructure Evolution of Sand-Cast Mg-4Y-2.3Nd-1Gd-0.6Zr Alloy Crept at 523-573 K[J]. J. Mater. Sci. Technol., 2017, 33(1): 79-89.
T (K) | σ (MPa) | ε˙m (s-1) | tr (h) | εr (%) |
---|---|---|---|---|
523 | 60 | 3.25 × 10-10 | a | a |
523 | 80 | 1.08 × 10-9 | a | a |
523 | 100 | 2.64 × 10-8 | 262.8 | 3.20 |
548 | 60 | 1.36 × 10-8 | 542.7 | 4.05 |
573 | 35 | 1.18 × 10-8 | 895.2 | 7.20 |
573 | 60 | 1.37 × 10-7 | 70.4 | 6.40 |
Table 1 Creep test conditions and results for the WE43(T6) alloy
T (K) | σ (MPa) | ε˙m (s-1) | tr (h) | εr (%) |
---|---|---|---|---|
523 | 60 | 3.25 × 10-10 | a | a |
523 | 80 | 1.08 × 10-9 | a | a |
523 | 100 | 2.64 × 10-8 | 262.8 | 3.20 |
548 | 60 | 1.36 × 10-8 | 542.7 | 4.05 |
573 | 35 | 1.18 × 10-8 | 895.2 | 7.20 |
573 | 60 | 1.37 × 10-7 | 70.4 | 6.40 |
Fig.1 Creep curves for the WE43(T6) alloy under various stresses at: (a, b) 523 K and (c, d) 573 K. It presents the total strain against time in (a, c) and creep rate against time in (b, d). The cross symbols at the end of the curves indicate that the specimen was crept to rupture
Fig.2 Creep curves for the WE43(T6) alloy at constant stress of 60 MPa under temperature range of 523-573 K: (a) total strain against time and (b) creep rate against time. The cross symbols at the end of the curves indicate that the specimen was crept to rupture
Fig.3 The log-log plot of the stress dependence of minimum creep rate at T = 523-573 K. Note that the previously reported data of WE43(T6) [15,17] and WE54(T6) alloys[17] are also presented for comparison
Fig.4 Arrhenius plot of the logarithm of minimum creep rate against the reciprocal of temperature for applied stress of 60 MPa is shown. Note that the previously reported data of WE43(T6) and WE54(T6) alloys[17] are also presented for comparison
Fig.5 Typical microstructure of the WE43(T6) alloy: (a) optical micrograph and (b, c) TEM bright-field images (the inset in Fig. 5(c) is a corresponding high-magnification image showing the precipitates, and the white and black arrows indicate the β′ and β1 phases, respectively); (d) the corresponding SAED pattern of Fig. 5(c) and the beam direction are approximately along the [0001]Mg axis zone, in which the white circles indicate the locations of diffraction spots from the precipitates
Fig.6 Microstructures of the creep specimen ruptured at condition of 573 K and 35 MPa: (a, b) optical micrographs of longitudinal and shank sections showing the development of PFZs along grain boundaries approximately normal to the stress direction, respectively; (c, d) TEM bright-field image taken from the longitudinal section and the corresponding SAED pattern, respectively. The beam direction is approximately along the [0001]Mg axis zone
Fig.8 SEM images obtained from the longitudinal section of ruptured creep specimens showing the development of directional PFZs along grain boundaries at different creep conditions: (a) 523 K/100 MPa; (b) 548 K/60 MPa; (c) 573 K/60 MPa; (d) 573 K /35 MPa. The average width of directional PFZs is measured as illustrated in the figure
Fig.9 Elements mapping of the grain boundary precipitates and PFZs in the ruptured creep specimen at condition of 573 K and 35 MPa: (a) SEM image; (b-e) the corresponding elements mapping of Mg, Y, Nd and Gd, respectively; (f) concentration of elements along the dot line (point h to point i) in (a)
Fig.10 TEM bright-field images showing the dislocation substructures in the ruptured creep specimen at condition of 573 K and 35 MPa. The incident beam is near [12ˉ13ˉ]Mg in (a), near [21ˉ1ˉ0]Mg in (b) and near [011ˉ0]Mg in (c)
Fig.11 Optical and SEM micrographs obtained from the longitudinal section of ruptured creep specimens showing the fracture mechanism at different creep conditions: (a-c) 523 K/100 MPa; (d, e) 548 K/60 MPa; (f, g) 573 K/35 MPa
Fig.12 Optical and SEM images obtained from the ruptured creep specimens showing the microstructures of the longitudinal section of fractures and fracture surfaces at different creep conditions: (a, b) 523 K/100 MPa; (c-f) 548 K/60 MPa; (g, h) 573 K /35 MPa
Alloy (wt%) | T (K) | σ (MPa) | n | Qc (kJ/mol) | Mechanisma | Reference |
---|---|---|---|---|---|---|
Mg | 473-600 | 8.2-21 | 5.2-6.5 | 135 ± 10 | 1 | Vagarali and Langdon[ |
750-820 | 3.7-6.3 | 6 | (140 ± 10) + 295/σ | 2 | ||
750-820 | <2.5 | 1 | 139 | 3 | ||
Mg-(0.7-3.9)Y (solution-treated) | 550-650 | 4-40 | 5-6 | — | 2 | Suzuki et al. and Janik et al.[ |
Mg-(0.7-8.3)Y (heat-treated) | <70-150 | 5 | (230 ± 30-290 ± 10) | 1 | ||
>70-150 | 12 | — | 6 | |||
Mg-8.3Y (aged) | 20-60 | 4 | — | 4 | ||
Mg-9Y (peak-aged) | 523-573 | 50-100 | 5.2 | 240 ± 20 | 1 | |
Mg-5.9Y-3Nd | 473-573 | 40 | — | 60-68 | 2 | Mordike[ |
573-623 | 40 | — | 100-226 | 1 | ||
Mg-6Y-4Nd | 563-633 | 10-30 | 2-3 | — | 4 | |
30-80 | 6-7 | — | — | |||
Mg-5.8Y-2.8Nd-0.9 Zr | <473 | 20-60 | — | 122-150 | 1 | |
>473 | 20-60 | — | 179-257 | 2 | ||
Mg-6Y-3Nd-0.5 Zr | 473-553 | 20 | — | 50-90 | 4 | |
553-623 | 20 | — | 200-300 | 2 or 5 | ||
WE43(T6) | 403-443 | 180-225 | 14 | 140 | — | |
503-543 | 32-80 | 4 | 170 | — | ||
WE54(T6) | 503-543 | 32-82 | 4.5 | 175-221 | — | |
WE43 (peak-aged) | 423-473 | 200-300 | 10 | 118.7 | 1 | Wang et al.[ |
473-523 | 300-200 | 4-5 | 232.9 | — | ||
Mg-3Y-2Nd-1Zn-1Mn | 573 | 30-70 | 5.9 | — | 1 and 2 | Hnilica et al.[ |
Mg-4Y-1Sc-1Mn | 523-598 | 40 | — | 351-392 | — | Mordike et al.[ |
573 | 30-50 | 8 | — | — | ||
Mg-(3-15)Gd-(2-8)Y-0.6Zr | 523-573 | 50-100 | 3.7-5.2 | 160-240 | — | Anyanwu et al.[ |
Mg-10Gd-3Y-0.4Zr | 523-573 | 30-120 | 4.0-4.6 | — | 1 | Janik et al.[ |
Mg-(10-19)Sc | 498-648 | 40 | — | 216-262 | — | Mordike et al.[ |
573 | 20-45 | 5-6.5 | — | — | ||
WE43(T6) | 523-573 | 35-100 | 4.6 | 199 ± 23 | 1 or 2 | The present work |
Table 2 Summary of creep stress exponent (n), activation energy for creep (Qc), and proposed creep deformation mechanisms for Mg and Mg alloys
Alloy (wt%) | T (K) | σ (MPa) | n | Qc (kJ/mol) | Mechanisma | Reference |
---|---|---|---|---|---|---|
Mg | 473-600 | 8.2-21 | 5.2-6.5 | 135 ± 10 | 1 | Vagarali and Langdon[ |
750-820 | 3.7-6.3 | 6 | (140 ± 10) + 295/σ | 2 | ||
750-820 | <2.5 | 1 | 139 | 3 | ||
Mg-(0.7-3.9)Y (solution-treated) | 550-650 | 4-40 | 5-6 | — | 2 | Suzuki et al. and Janik et al.[ |
Mg-(0.7-8.3)Y (heat-treated) | <70-150 | 5 | (230 ± 30-290 ± 10) | 1 | ||
>70-150 | 12 | — | 6 | |||
Mg-8.3Y (aged) | 20-60 | 4 | — | 4 | ||
Mg-9Y (peak-aged) | 523-573 | 50-100 | 5.2 | 240 ± 20 | 1 | |
Mg-5.9Y-3Nd | 473-573 | 40 | — | 60-68 | 2 | Mordike[ |
573-623 | 40 | — | 100-226 | 1 | ||
Mg-6Y-4Nd | 563-633 | 10-30 | 2-3 | — | 4 | |
30-80 | 6-7 | — | — | |||
Mg-5.8Y-2.8Nd-0.9 Zr | <473 | 20-60 | — | 122-150 | 1 | |
>473 | 20-60 | — | 179-257 | 2 | ||
Mg-6Y-3Nd-0.5 Zr | 473-553 | 20 | — | 50-90 | 4 | |
553-623 | 20 | — | 200-300 | 2 or 5 | ||
WE43(T6) | 403-443 | 180-225 | 14 | 140 | — | |
503-543 | 32-80 | 4 | 170 | — | ||
WE54(T6) | 503-543 | 32-82 | 4.5 | 175-221 | — | |
WE43 (peak-aged) | 423-473 | 200-300 | 10 | 118.7 | 1 | Wang et al.[ |
473-523 | 300-200 | 4-5 | 232.9 | — | ||
Mg-3Y-2Nd-1Zn-1Mn | 573 | 30-70 | 5.9 | — | 1 and 2 | Hnilica et al.[ |
Mg-4Y-1Sc-1Mn | 523-598 | 40 | — | 351-392 | — | Mordike et al.[ |
573 | 30-50 | 8 | — | — | ||
Mg-(3-15)Gd-(2-8)Y-0.6Zr | 523-573 | 50-100 | 3.7-5.2 | 160-240 | — | Anyanwu et al.[ |
Mg-10Gd-3Y-0.4Zr | 523-573 | 30-120 | 4.0-4.6 | — | 1 | Janik et al.[ |
Mg-(10-19)Sc | 498-648 | 40 | — | 216-262 | — | Mordike et al.[ |
573 | 20-45 | 5-6.5 | — | — | ||
WE43(T6) | 523-573 | 35-100 | 4.6 | 199 ± 23 | 1 or 2 | The present work |
|
[1] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[2] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[3] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[4] | Hao Li, Qinghui Zeng, Pengfei Yang, Qi Sun, Jianmin Wang, Jian Tu, Minhao Zhu. Towards understanding twinning behavior near fracture surface in magnesium [J]. J. Mater. Sci. Technol., 2020, 43(0): 230-237. |
[5] | Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 75-84. |
[6] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[7] | Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures [J]. J. Mater. Sci. Technol., 2020, 43(0): 126-134. |
[8] | Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 64-73. |
[9] | Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study [J]. J. Mater. Sci. Technol., 2020, 46(0): 168-176. |
[10] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[11] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[12] | Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44(0): 19-23. |
[13] | Huan Liu, Chao Sun, Ce Wang, Yuhua Li, Jing Bai, Feng Xue, Aibin Ma, Jinghua Jiang. Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles [J]. J. Mater. Sci. Technol., 2020, 59(0): 61-71. |
[14] | Shuo Wang, Chi Zhang, Xin Li, Houbing Huang, Junsheng Wang. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 205-214. |
[15] | Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 76-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||