J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (6): 509-514.DOI: 10.1016/j.jmst.2016.03.001
Special Issue: 铝合金专辑
• Orginal Article • Previous Articles Next Articles
H. Wang1, Y.M. Zhang2, B.C. Zhou1, D.H. Yang3, Y. Wu1, *, X.J. Liu1, Z.P. Lu1, *
Received:
2015-10-30
Online:
2016-06-10
Contact:
Corresponding authors. Ph.D.; Tel.: +86 1062332246; Fax: +86 1062333447. (Y. Wu); (Z.P. Lu). E-mail addresses: Supported by:
H. Wang, Y.M. Zhang, B.C. Zhou, D.H. Yang, Y. Wu, X.J. Liu, Z.P. Lu. Mold-Filling Ability of Aluminum Alloy Melt during the Two-Step Foaming Process[J]. J. Mater. Sci. Technol., 2016, 32(6): 509-514.
Illustration of the semi-solid aluminum alloy foam filling process. (a) Sketch of rheological filling of a semi-solid aluminum foam in a round tube, and (b) the relationship between the filling force and the filling time
Typical cross-sectional morphology of the aluminum foams (a) 1-4, (b) 2-3, (c) 3-3, (d) 4-4 and (e) 5-4 shown in Table 1, and the porosity of these specimens is 70.9%, 83.6%, 86.9%, 84.8% and 91.6%, respectively.
Strength comparison of the shaped aluminum alloy foams with and without dense outer skins as a function of porosity. Inset is compressive stress-strain curves of typical foams with a dense skin
[1] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide [2] H.P. Degischer, B. Kriszi, Handbook of Cellular Metals [3] M.F. Ashby, T.J. Lu, Sci. China, Ser. B, 46 (2003), pp. 521-532 [4] A.G. Evans, J.W. Hutchinson, M.F. Ashby, Prog. Mater. Sci, 43 (1999), pp. 171-221 [5] L.P. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater, 10 (2008), pp. 775-787 [6] J. Banhart, Int. J. Veh. Des, 37 (2005), pp. 114-125 [7] J. Banhart, H.W. Seeliger, Adv. Eng. Mater, 10 (2008), pp. 793-802 [8] R.A. Shenoi, J.F. Wellicome, Composite Materials in Maritime Structures, Cambridge University Press, Cambridge (1993), p. 154 [9] D. Schwingel, H.W. Seeliger, H.W.C. Vecchionacci, D. Alwes, J. Dittrich, Acta Astronaut, 61 (2007), pp. 326-330 [10] J. Baumeister, J. Banhart, M. Weber, Process for Manufacturing a Metallurgical Composition, German Patent; 4426627C2 (1994) [11] J. Frei, V. Gergely, A. Mortensen, T.W. Clyne, Adv. Eng. Mater, 2 (2002), pp. 749-752 [12] C. Körner, M. Hirschmann, M. Lamm, R.F. Singer, J. Banhart, N.A. Fleck, A. Mortensen (Eds.), Proceeding of International Conference on Cellular Metals: Manufacture, Properties, Applications, Berlin, German (2003) September 22-25 [13] H. Wang, D.H. Yang, S.Y. He, D.P. He, J. Mater. Sci. Technol, 26 (2010), pp. 763-767 [14] Y. Liu, H.W. Zhang, Y.X. Li, Trans. Nonferrous Met. Soc. China, 25 (2015), pp. 1004-1010 [15] X.M. Chu, H. Wang, S.Y. He, D.P. He, Int. J. Mod. Phys. B, 23 (2009), pp. 972-977 [16] J.T. Shang, X.M. Chu, D.P. He, Mater. Sci. Eng. B Solid State Mater. Adv. Technol, 151 (2008), pp. 157-162 [17] A.E. Simone, L.J. Gibson, Acta Mater, 46 (1998), pp. 3109-3123 [18] C. Körner, R.F. Singer, J. Banhart, M.F. Ashby, N.A. Fleck (Eds.), Metal Foams and Porous Metal Structures, Verl, MIT Publishing, Bremen (1999), pp. 91-96 [19] L. Huang, H. Wang, D.H. Yang, F. Ye, Z.P. Lu, Intermetallics, 28 (2012), pp. 71-76 [20] D.H. Yang, J.Q. Chen, H. Wang, J.H. Jiang, A.B. Ma, Z.P. Lu, J. Mater. Sci. Technol, 31 (2015), pp. 12-19 [21] D.H. Yang, B.Y. Hur, D.P. He, S.R. Yang, Mater. Sci. Eng. A Struct. Mater, 445-446 (2007), pp. 415-426 [22] B. Ouriev, Rheol. Acta, 46 (2007), pp. 785-792 [23] R. Darby, Chemical Engineering Fluid Mechanics, (second ed.)Marcel Dekker Inc., New York, USA (2001) [24] W.M. Mao, Semi-Solid Metals Forming Technology, Mechanical Industry Press, Beijing, China (2004) [25] A.R. Kennedy, S. Asavavisithchai, Adv. Eng. Mater, 6 (2004), pp. 400-406 [26] S.S. Xie, S.H. Huang, Semi-Solid Metal Processing Technology and Its Application, Metallurgical Industry Press, Beijing, China (1999) |
[1] | Xiawei Yang, Wenya Li, Siqi Yu, Yaxin Xu, Kaiwei Hu, Yaobang Zhao. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 59(0): 117-128. |
[2] | Qiyang Tan, Yingang Liu, Zhiqi Fan, Jingqi Zhang, Yu Yin, Ming-Xing Zhang. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 34-45. |
[3] | Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 142-151. |
[4] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
[5] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
[6] | Fang Guan, Jizhou Duan, Xiaofan Zhai, Nan Wang, Jie Zhang, Dongzhu Lu, Baorong Hou. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36(0): 55-64. |
[7] | Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 106-117. |
[8] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[9] | Ting Wu, Carsten Blawert, Mikhail L.Zheludkevich. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process [J]. J. Mater. Sci. Technol., 2020, 50(0): 75-85. |
[10] | Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior [J]. J. Mater. Sci. Technol., 2020, 39(0): 14-21. |
[11] | Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43(0): 1-13. |
[12] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[13] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
[14] | Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening [J]. J. Mater. Sci. Technol., 2020, 46(0): 44-49. |
[15] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||