J. Mater. Sci. Technol. ›› 2022, Vol. 96: 233-240.DOI: 10.1016/j.jmst.2021.01.098
• Research Article • Previous Articles Next Articles
Xing Tonga,c, Yan Zhangb,c,d,*(), Yaocen Wange, Xiaoyu Liangf, Kai Zhangg, Fan Zhangh, Yuanfei Caib,l, Haibo Kea,*(
), Gang Wangi, Jun Shenj, Akihiro Makinoc, Weihua Wanga,k
Received:
2020-11-08
Revised:
2021-01-21
Accepted:
2021-01-23
Published:
2022-01-10
Online:
2022-01-05
Contact:
Yan Zhang,Haibo Ke
About author:
kehaibo@sslab.org.cn (H. Ke).Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing[J]. J. Mater. Sci. Technol., 2022, 96: 233-240.
Fig. 1. Structural characterization. (a) XRD curves of ASQ and annealed samples. Inset shows thermal properties measured by DSC, in which the glass transition temperature (Tg) and crystallization temperature (Tx) are identified as 780 and 837 K, respectively. HRTEM images for (b) ASQ ribbons and samples annealed at different conditions of (c) 668 K at 400 K/min and (d) 748 K for at 400 K/min. The local ordering clusters were observed in annealed samples marked by the red dotted circle.
Fig. 2. The variation of coercivity (Hc) of ribbons annealed at various conditions. The samples were annealed at Ta = 668, 748, and 798 K for 10 min incubating, respectively.
Fig. 3. Structural evolution in reciprocal space. (a) Structure factor at different annealed conditions. The insets show the enlarged peaks of q1, q2 and q2', respectively. The inset of the top right shows the fitting process by pseudo-Voigt function. (b) The FWHM1 of q1 and FWHM2 of q2 versus coercivity [the diffraction intensity of the samples annealed at different conditions in the insets of Fig. 3(a) is shown by shifted along the vertical axis for visibility].
Fig. 4. Structural evolution in real space upon annealing at different conditions. (a) The pair distribution function, PDF(r). The top inset exhibits the enlarged view of the first maximum (r1). The bottom inset shows the fitting process for MRO by a power-law function. (b) The characteristics in short and medium ranges. The upper one shows the positions of r1 versus Hc, which were from the fitting results by the pseudo-Voigt function. The lower one exhibits the decay exponent versus Hc derived from the fitting process. (c) The differentiated PDF (ΔPDF) was calculated by ΔPDF(r)T = PDF(r)T - PDF(r)ASQ, to sensitively detect the temporal variations of the PDF during isothermal annealing. (d) Radial distribution functions, RDF(r). The top inset shows the fitting process for the first peak by pseudo-Voigt function, which is composed of two sub-peaks. (e) The coordination numbers, CNs, integrated from the first full peak, sub-peak I and sub-peak II, changing with Hc at various annealing conditions.
Fig. 5. Schematic diagrams describing atomic evolution of Fe76Si9B10P5 alloy during various isothermal annealing processes. Glasses I, II, III represents three amorphous states evolved from the annealing processes at different conditions. Glass I is evolved by self-adaptive expansion and shrinkage as poor activation energy. Glass III is instigated to be modulated in SRO and MRO coordinately by enough activation energy. Glass II is an intermediated state between Glass I and Glass III. The schematic diagram of the potential energy hypersurface is inset where the different kinds of glasses are indicated. Consequently, in Glass I, the various ferromagnetic regions are coupled heterogeneously, in which the magneto-anisotropy is still considerable. However, in Glass III, the coupled “homogeneous strong and weak ferromagnetic regions (HSWFRs)” gives decreasing of the magneto-anisotropy, leading to a magnetic softness.
[1] |
A. Makino, IEEE Trans. Magn. 48 (2012) 1331-1335.
DOI URL |
[2] | Y. Zhang, P. Sharma, A. Makino, IEEE Trans. Magn. 51 (2015) 1-4. |
[3] |
B. Zang, R. Parsons, K. Onodera, H. Kishimoto, A. Kato, A.C.Y. Liu, K. Suzuki, Scr. Mater. 132 (2017) 68-72.
DOI URL |
[4] |
C. Chang, B. Shen, A. Inoue, Appl. Phys. Lett. 89 (2006) 051912.
DOI URL |
[5] |
F. Wan, A. He, J. Zhang, J. Song, A. Wang, C. Chang, X. Wang, J. Electron. Mater. 45 (2016) 4 913-4 918.
DOI URL |
[6] | H. Li, A. Wang, T. Liu, P. Chen, A. He, Q. Li, J. Luan, C.T. Liu, Mate. Today 42 (2020) 49-56. |
[7] |
Y. Han, F. Kong, C. Chang, S. Zhu, A. Inoue, E.S. Shalaan, F. Al-Marzouki, J. Mater. Res. 30 (2015) 547-555.
DOI URL |
[8] |
D. Azuma, N. Ito, M. Ohta, J. Magn. Magn. Mater. 501 (2020) 166373.
DOI URL |
[9] |
E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, R. Schäfer, Acta Mater 96 (2015) 10-17.
DOI URL |
[10] |
L. Shi, K. Yao, Mater. Des. 189 (2020) 108511.
DOI URL |
[11] |
Y. Li, X. Jia, W. Zhang, Y. Zhang, G. Xie, Z. Qiu, J. Luan, Z. Jiao, J. Mater. Sci. Technol. 65 (2020) 171-181.
DOI URL |
[12] |
C. Chang, J. Zhang, B. Shen, W. Wang, A. Inoue, J. Mater. Res. 29 (2014) 1217-1222.
DOI URL |
[13] |
C. Wang, A. He, A. Wang, J. Pang, X. Liang, Q. Li, C. Chang, K. Qiu, X. Wang, Intermetallics 84 (2017) 142-147.
DOI URL |
[14] |
Z. Lu, H. Li, Z. Lei, C. Chang, X. Wang, Z. Lu, Metals (Basel) 8 (4) (2018) 283.
DOI URL |
[15] |
L. Hou, X. Fan, Q. Wang, W. Yang, B. Shen, J. Mater. Sci. Technol. 35 (2019) 1655-1661.
DOI URL |
[16] |
A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, F. Al-Marzouki, J. Alloys Compd. 615 (2014) S2-S8.
DOI URL |
[17] |
M. Stoica, P. Ramasamy, I. Kaban, S. Scudino, M. Nicoara, G.B.M. Vaughan, J. Wright, R. Kumar, J. Eckert, Acta Mater 95 (2015) 335-342.
DOI URL |
[18] |
M. Kuhnt, X. Xu, M. Amalraj, P. Kozikowski, K.G. Pradeep, T. Ohkubo, M. Mar- silius, T. Strache, C. Polak, M. Ohnuma, K. Hono, G. Herzer, J. Alloys Compd. 766 (2018) 686-693.
DOI URL |
[19] |
T. Egami, Rep. Prog. Phys. 47 (1984) 1601-1725.
DOI URL |
[20] |
Y. Han, A. Inoue, F.L. Kong, C.T. Chang, S.L. Shu, E. Shalaan, F. Al-Marzouki, J. Alloys Compd. 657 (2016) 237-245.
DOI URL |
[21] |
P. Sharma, X. Zhang, Y. Zhang, A. Makino, Scr. Mater. 95 (2015) 3-6.
DOI URL |
[22] |
L. Jiang, Y. Zhang, X. Tong, T. Suzuki, A. Makino, J. Magn. Magn. Mater. 471 (2019) 148-152.
DOI URL |
[23] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Prog. Mater. Sci. 103 (2019) 235-318.
DOI URL |
[24] |
M. Matsuura, M. Nishijima, K. Takenaka, A. Takeuchi, H. Ofuchi, A. Makino, J. Appl. Phys. 117 (2015) 17A324.
DOI URL |
[25] |
I.V. Lyasotsky, N.B. Dyakonova, D.L. Dyakonov, J. Alloys Compd. 586 (2014) S20-S23.
DOI URL |
[26] |
Z. Zhang, P. Sharma, A. Makino, J. Appl. Phys. 112 (2012) 103902.
DOI URL |
[27] |
Y. Wang, Y. Zhang, A. Makino, Y. Kawazoe, J. Alloys Compd. 730 (2018) 196-200.
DOI URL |
[28] |
H. Kronmüller, J. Appl. Phys. 52 (1981) 1859-1864.
DOI URL |
[29] |
K. Suzuki, G. Herzer, Scr. Mater. 67 (2012) 548-553.
DOI URL |
[30] |
G. Herzer, Acta Mater 61 (2013) 718-734.
DOI URL |
[31] |
X. Tong, G. Wang, J. Bednarčík, Y.D. Jia, I. Hussain, J. Yi, Z.H. Stachurski, Q.J. Zhai, Mater. Sci. Eng. A 721 (2018) 8-13.
DOI URL |
[32] |
X. Tong, G. Wang, Z.H. Stachurski, J. Bednarcik, N. Mattern, Q.J. Zhai, J. Eckert, Sci. Rep. 6 (2016) 30876.
DOI URL PMID |
[33] | F. Albano, N. Lacevic, M.L. Falk, S.C. Glotzer, Mater. Sci. Eng.A 375-377 (2004) 671-674. |
[34] |
F. Zhu, H.K. Nguyen, S.X. Song, D.P. Aji, A. Hirata, H. Wang, K. Nakajima, M.W. Chen, Nat. Commun. 7 (2016) 11516.
DOI URL PMID |
[35] |
Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106 (2011) 125504.
URL PMID |
[36] | S. Ouyang, L.J. Song, Y.H. Liu, J.T. Huo, J.Q. Wang, W. Xu, J.L. Li, C.T. Wang, X.M. Wang, R.W. Li, Phys. Rev. Mater. 2 (2018) 063601. |
[37] |
Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379-473.
DOI URL |
[38] |
H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mater. 10 (2011) 439-442.
DOI URL |
[39] |
H. Kronmüller, J. Magn. Magn. Mater. 24 (1981) 159-167.
DOI URL |
[40] |
M. Chen, Annu. Rev. Mater. Sci. 38 (2008) 445-469.
DOI URL |
[41] |
A. Hirata, Y. Hirotsu, E. Matsubara, T. Ohkubo, K. Hono, Phys. Rev. B 74 (2006) 184204.
DOI URL |
[42] |
J. Fornell, S. González, E. Rossinyol, S. Suriñach, M.D. Baró, D.V. Louzguine-Luz- gin, J.H. Perepezko, J. Sort, A. Inoue, Acta Mater. 58 (2010) 6256-6266.
DOI URL |
[43] |
S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, R. Busch, Nat. Commun. 4 (2013) 2083.
DOI URL |
[44] |
H.B. Ke, J.F. Zeng, C.T. Liu, Y. Yang, J. Mater. Sci. Technol. 30 (2014) 560-565.
DOI URL |
[45] |
A. Hirata, Y. Hirotsu, K. Amiya, A. Inoue, Phys. Rev. B 78 (2008) 144205.
DOI URL |
[46] |
Y.C. Hu, Y.W. Li, Y. Yang, P.F. Guan, H.Y. Bai, W.H. Wang, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 6375-6380.
DOI URL |
[47] |
X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, J. Lu, C.T. Liu, Phys. Rev. Lett. 105 (2010) 155501.
URL PMID |
[48] |
A. Hirata, N. Kawahara, Y. Hirotsu, A. Makino, Intermetallics 17 (2009) 186-189.
DOI URL |
[49] | L. Zhu, Y. Meng, X.B. Zhai, Y.G. Wang, S. Lan, J. Magn.Magn. Mater. 472 (2019) 49-52. |
[50] |
M. Ohnuma, G. Herzer, P. Kozikowski, C. Polak, V. Budinsky, S. Koppoju, Acta Mater 60 (2012) 1278-1286.
DOI URL |
[51] |
A.P. Srivastava, D. Srivastava, K. Sudarshan, S.K. Sharma, P.K. Pujari, B. Majum- dar, K.G. Suresh, G.K. Dey, J. Magn. Magn. Mater. 324 (2012)2476-2482.
DOI URL |
[52] |
A.V. Nosenko, V.V. Kyrylchuk, M.P. Semen’ko, M. Nowicki, A. Marusenkov, T.M. Mika, O.M. Semyrga, G.M. Zelinska, V.K. Nosenko, J. Magn. Magn. Mater. 515 (2020) 167328.
DOI URL |
[53] |
B. Jez, J. Wyslocki, S. Walters, P. Postawa, M. Nabialek, Materials (Basel) 13 (2020) 1367.
DOI URL |
[54] |
K. Bloch, M. Nabialek, P. Postawa, A.V. Sandu, A. Sliwa, B. Jez, Materials (Basel) 13 (2020) 846.
DOI URL |
[55] |
M. Nabiałek, B. Jeż, K. Błoch, J. Gondro, K. Jeż, A.V. Sandu, P. Pietrusiewicz, J. Alloys Compd. 820 (2020) 153420.
DOI URL |
[56] |
J. Dai, Y.G. Wang, L. Yang, G.T. Xia, Q.S. Zeng, H.B. Lou, Scr. Mater. 127 (2017) 88-91.
DOI URL |
[57] |
G.V. Stepanov, A.V. Chertovich, E.Y. Kramarenko, J. Magn. Magn. Mater. 324 (2012) 3448-3451.
DOI URL |
[58] |
A. Makino, T. Kubota, C. Chang, M. Makabe, A. Inoue, J. Magn. Magn. Mater. 320 (2008) 2499-2503.
DOI URL |
[59] |
D. Ma, A.D. Stoica, X.L. Wang, Nat. Mater. 8 (2009) 30-34.
DOI URL PMID |
[60] |
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439 (2006) 419-425.
DOI URL |
[61] | Y. Wang, Y. Zhang, A. Makino, Y. Liang, Y. Kawazoe, IEEE Trans. Magn. 50 (2014) 1-4. |
[62] |
D.B. Miracle, T. Egami, K.M. Flores, K.F. Kelton, MRS Bull 32 (2011) 629-634.
DOI URL |
[63] |
B.S. Dong, S.X. Zhou, D.R. Li, J.Y. Qin, S.P. Pan, Y.G. Wang, Z.B. Li, J. Non-Cryst. Solids 358 (2012) 2749-2752.
DOI URL |
[64] |
F.H. Stillinger, Science 267 (1995) 1935-1939.
URL PMID |
[65] |
A. Zhu, G.J. Shiflet, S.J. Poon, Metall. Mater. Trans. A 43 (2012) 3501-3509.
DOI URL |
[66] |
A. Wang, C. Zhao, A. He, H. Men, C. Chang, X. Wang, J. Alloys Compd. 656 (2016) 729-734.
DOI URL |
[67] |
G. Herzer, J. Magn. Magn. Mater. 294 (2005) 99-106.
DOI URL |
[68] |
L. Zhu, Y.G. Wang, S. Lan, X.L. Wang, C.Y. Lu, X.B. Zhai, Y. Meng, Intermetallics 103 (2018) 72-77.
DOI URL |
[69] |
Z.B. Li, B.G. Shen, E. Niu, J.R. Sun, Appl. Phys. Lett. 103 (2013) 062405.
DOI URL |
[70] |
H. Zhao, F. Sun, X. Li, Y. Ding, Y.Q. Yan, X. Tong, J. Ma, H.B. Ke, W.H. Wang, Scr. Mater. 194 (2021) 113606.
DOI URL |
[71] |
J. Ma, C. Yang, X. Liu, B. Shang, Q. He, F. Li, T.Y. Wang, D. Wei, X. Liang, X.Y. Wu, Y.J. Wang, F. Gong, P.F. Guan, W.H. Wang, Y. Yang, Sci. Adv. 5 (2019) eaax7256.
DOI URL |
[72] |
X. Liang, J. Ma, X.Y. Wu, B. Xu, F. Gong, J.G. Lei, T.J. Peng, R. Cheng, J. Mater. Sci. Technol. 33 (2017) 703-707.
DOI URL |
[73] | Q. Chen, M. Zhang, J. Gu, Q. Cao, C. Zhang, X. Han, L. Li, W. Wang, L. Liu, Com- mun. Mater. 1 (2020) 44. |
[74] | X. Li, D. Wei, J.Y. Zhang, X.D. Liu, Z. Li, T.Y. Wang, Q.F. He, Y.J. Wang, J. Ma, W.H. Wang, Y. Yang, Appl. Mater. Today 21 (2020) 100866. |
[1] | Feilong Wang, Dawei Yin, Jingwang Lv, Shan Zhang, Mingzhen Ma, Xinyu Zhang, Riping Liu. Effect on microstructure and plastic deformation behavior of a Zr-based amorphous alloy by cooling rate control [J]. J. Mater. Sci. Technol., 2021, 82(0): 1-9. |
[2] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[3] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
[4] | Yuchen Chi, Feng Chen, Hangning Wang, Fengxiang Qin, Haifeng Zhang. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92(0): 40-50. |
[5] | Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr [J]. J. Mater. Sci. Technol., 2020, 40(0): 128-134. |
[6] | Miao Fang, Wang Qianqian, Zeng Qiaoshi, Hou Long, Liang Tao, Cui Zhiqiang, Shen Baolong. Excellent reusability of FeBC amorphous ribbons induced by progressive formation of through-pore structure during acid orange 7 degradation [J]. J. Mater. Sci. Technol., 2020, 38(0): 107-118. |
[7] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[8] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[9] | Cuiyu Zhang, Xuan Ge, Qiaodan Hu, Fan Yang, Pingsheng Lai, Caijuan Shi, Wenquan Lu, Jianguo Li. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2‒TiO2 system [J]. J. Mater. Sci. Technol., 2020, 53(0): 53-60. |
[10] | Xingzhou Li, Jili Wu, Ye Pan. Preparation of nanostructured Cu/Zr metal mixed oxides via self-sustained oxidation of a CuZr binary amorphous alloy [J]. J. Mater. Sci. Technol., 2019, 35(8): 1601-1606. |
[11] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Xuan Ge, Sheng Cao, Siyu Sun, Tianxing Yang, Mingxu Xia, Jianguo Li. In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography [J]. J. Mater. Sci. Technol., 2019, 35(7): 1388-1392. |
[12] | Pingbo Chen, Tao Liu, Fengyu Kong, Anding Wang, Chunyan Yu, Gang Wang, Chuntao Chang, Xinmin Wang. Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys [J]. J. Mater. Sci. Technol., 2018, 34(5): 793-798. |
[13] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[14] | Y.C. Wang, X.M. Luo, L.J. Chen, H.W. Yang, B. Zhang, G.P. Zhang. Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers [J]. J. Mater. Sci. Technol., 2018, 34(12): 2283-2289. |
[15] | Zhiqiang Xu, Yifei Xu, An Zhang, Jiangyong Wang, Zumin Wang. Oxidation of amorphous alloys [J]. J. Mater. Sci. Technol., 2018, 34(11): 1977-2005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||