J. Mater. Sci. Technol. ›› 2022, Vol. 96: 241-247.DOI: 10.1016/j.jmst.2021.03.082
• Research Article • Previous Articles Next Articles
Defang Tua, Jianqi Yanb, Yunbo Xieb, Jun Lia,c,*(), Shuo Fengd, Mingxu Xiaa, Jianguo Lia,c, Alex Po Leungb
Received:
2021-02-22
Revised:
2021-03-24
Accepted:
2021-03-28
Published:
2022-01-10
Online:
2022-01-05
Contact:
Jun Li
About author:
*E-mail address: li.jun@sjtu.edu.cn (J. Li).Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning[J]. J. Mater. Sci. Technol., 2022, 96: 241-247.
Fig. 5. Data distributions of (a) TC, (b) ∆Thys, and (c) ∆Sm, statistical properties such as total data points (N), mean, minimum, maximum, and std. also shown.
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.878 | 0.924 | 0.928 | 0.907 | 0.934 |
2 | 0.883 | 0.929 | 0.927 | 0.915 | 0.947 |
3 | 0.881 | 0.930 | 0.932 | 0.903 | 0.938 |
4 | 0.878 | 0.928 | 0.932 | 0.898 | 0.945 |
5 | 0.875 | 0.935 | 0.937 | 0.909 | 0.935 |
Table 1 10% accuracy of the allowable errors of each method with five separate experiments (TC dataset).
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.878 | 0.924 | 0.928 | 0.907 | 0.934 |
2 | 0.883 | 0.929 | 0.927 | 0.915 | 0.947 |
3 | 0.881 | 0.930 | 0.932 | 0.903 | 0.938 |
4 | 0.878 | 0.928 | 0.932 | 0.898 | 0.945 |
5 | 0.875 | 0.935 | 0.937 | 0.909 | 0.935 |
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.809 | 0.936 | 0.932 | 0.905 | 0.938 |
2 | 0.808 | 0.918 | 0.918 | 0.898 | 0.935 |
3 | 0.815 | 0.903 | 0.909 | 0.897 | 0.946 |
4 | 0.830 | 0.925 | 0.935 | 0.903 | 0.950 |
5 | 0.815 | 0.938 | 0.937 | 0.901 | 0.948 |
Table 2 10% accuracy of the allowable errors of each method with five separate experiments (ΔThys dataset).
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.809 | 0.936 | 0.932 | 0.905 | 0.938 |
2 | 0.808 | 0.918 | 0.918 | 0.898 | 0.935 |
3 | 0.815 | 0.903 | 0.909 | 0.897 | 0.946 |
4 | 0.830 | 0.925 | 0.935 | 0.903 | 0.950 |
5 | 0.815 | 0.938 | 0.937 | 0.901 | 0.948 |
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.662 | 0.801 | 0.812 | 0.815 | 0.862 |
2 | 0.669 | 0.803 | 0.809 | 0.806 | 0.867 |
3 | 0.658 | 0.798 | 0.797 | 0.806 | 0.851 |
4 | 0.658 | 0.803 | 0.809 | 0.814 | 0.853 |
5 | 0.667 | 0.805 | 0.802 | 0.805 | 0.830 |
Table 3 10% accuracy of the allowable errors of each method with five separate experiments (ΔSm dataset).
Exp. no | LR | SVM (eps-regression) | SVM (nu-regression) | RF | NN |
---|---|---|---|---|---|
1 | 0.662 | 0.801 | 0.812 | 0.815 | 0.862 |
2 | 0.669 | 0.803 | 0.809 | 0.806 | 0.867 |
3 | 0.658 | 0.798 | 0.797 | 0.806 | 0.851 |
4 | 0.658 | 0.803 | 0.809 | 0.814 | 0.853 |
5 | 0.667 | 0.805 | 0.802 | 0.805 | 0.830 |
Fig. 7. Comparison and absolute deviation (shown on the right of each set of data) between the predicted and experimental values. (a) TC, (b) ΔThys, and (c) ΔSm.
Fig. 10. Predicted effect of B doping on TC, ΔThys, and ΔSm at different Si contents. (a) TC, (b) ΔThys, and (c) ΔSm at Si = 0.33; (d) TC, (e) ΔThys, and (f) ΔSm at Si = 0.40; (g) TC, (h) ΔThys, and (i) ΔSm at Si = 0.50.
[1] | K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Res. 30 (2000) 387-429. |
[2] | A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications, 2003. |
[3] |
F. Guillou, G. Porcari, H. Yibole, N. Van Dijk, E. Brück, Adv. Mater. 26 (2014) 2671-2675.
DOI URL |
[4] |
V.K. Pecharsky, K.A. Gschneidner Jr, J. Magn. Magn. Mater. 200 (1999) 44-56.
DOI URL |
[5] |
S.Y. Dan’kov, A.M. Tishin, V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. B 57 (1998) 3478-3490.
DOI URL |
[6] | K. Prabahar, N.P. Kumar, D.M. RajKumar, S. Arumugam, M.M. Raja, Inter- metallics 96 (2018) 18-24. |
[7] |
S.A. Nikitin, A.V. Smirnov, I.A. Ovchenkova, Y.A. Ovchenkov, J. Appl. Phys. 124 (2018) 83902.
DOI URL |
[8] |
L. Yang, Z. Zhou, J. Qian, X. Ge, J. Li, Q. Hu, J. Li, Metall. Mater. Trans. A 48 (2017) 4229-4236.
DOI URL |
[9] |
Z. Xu, Y. Dai, Y. Fang, Z. Luo, K. Han, C. Song, Q. Zhai, H. Zheng, J. Mater. Sci. Technol. 34 (2018) 1337-1343.
DOI URL |
[10] |
Y. Shao, J. Liu, M. Zhang, A. Yan, K.P. Skokov, D.Y. Karpenkov, O. Gutfleisch, Acta Mater 125 (2017) 506-512.
DOI URL |
[11] |
O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415 (2002) 150-152.
DOI URL |
[12] |
B. Wurentuya, S. Ma, B. Narsu, O. Tegus, Z. Zhang, J. Mater. Sci. Technol. 35 (2019) 127-133.
DOI |
[13] |
S. Kavita, G. Anusha, P. Bhatt, V. Suresh, R. Vijay, K. Sethupathi, R. Gopalan, J. Alloys Compd. 817 (2020) 153232.
DOI URL |
[14] |
X.F. Miao, S.Y. Hu, F. Xu, E. Brück, Rare Met 37 (2018) 723-733.
DOI URL |
[15] |
Z. Zhong, S. Ma, D. Wang, Y. Du, J. Mater. Sci. Technol. 28 (2012) 193-199.
DOI URL |
[16] |
Q. Hu, Z. Zhou, L. Yang, Y. Huang, J. Li, J. Li, Metall. Mater. Trans. A 48 (2017) 5480-5491.
DOI URL |
[17] |
Y. Fang, Y.T. Dai, Z.S. Xu, H.X. Zheng, Mater. Sci. Forum 913 (2018) 759-764.
DOI URL |
[18] |
M. Qian, X. Zhang, L. Wei, P. Martin, J. Sun, L. Geng, T.B. Scott, H.X. Peng, Sci Rep 8 (2018) 16574.
DOI URL |
[19] |
Y. Geng, Z. Zhang, O. Tegus, C. Dong, Y. Wang, Sci. China Mater. 59 (2016) 1062-1068.
DOI URL |
[20] | N.H. Dung, L. Zhang, Z.Q. Ou, E. Brck, Appl. Phys. Lett. 99 (2011) 2009-2012. |
[21] | D.T. Cam Thanh, E. Brück, N.T. Trung, J.C.P. Klaasse, K.H.J. Buschow, Z.Q. Ou, O. Tegus, L. Caron, J. Appl. Phys. 103 (2008) 2006-2009. |
[22] |
A. He, Y. Mozharivskyj, Intermetallics 105 (2019) 56-60.
DOI URL |
[23] |
Z.Q. Ou, N.H. Dung, L. Zhang, L. Caron, E. Torun, N.H. van Dijk, O. Tegus E. Brück, J. Alloys Compd. 730 (2018) 392-398.
DOI URL |
[24] |
J. Lai, B. Huang, X. Miao, N. Van Thang, X. You, M. Maschek, L. van Eijck, D. Zeng, N. van Dijk, E. Brück, J. Alloys Compd. 803 (2019) 671-677.
DOI URL |
[25] |
F. Guillou, H. Yibole, N.H. Van Dijk, E. Brück, J. Alloys Compd. 632 (2015) 717-722.
DOI URL |
[26] |
Q. Zhou, Z.G. Zheng, W.H. Wang, L. Lei, A. He, D.C. Zeng, Intermetallics 106 (2019) 94-99.
DOI URL |
[27] |
N.V. Thang, H. Yibole, X.F. Miao, K. Goubitz, L. van Eijck, N.H. van Dijk, E. Brück, JOM 69 (2017) 1432-1438.
DOI URL |
[28] |
M. Fries, L. Pfeuffer, E. Bruder, T. Gottschall, S. Ener, L.V.B. Diop, T. Gröb, K.P. Skokov, O. Gutfleisch, Acta Mater 132 (2017) 222-229.
DOI URL |
[29] |
Z.Q. Ou, L. Zhang, N.H. Dung, L. Caron, E. Brück, J. Alloys Compd. 710 (2017) 446-451.
DOI URL |
[30] |
N.V. Thang, H. Yibole, N.H. van Dijk, E. Brück, J. Alloys Compd. 699 (2017) 633-637.
DOI URL |
[31] |
T. Zheng, X. Hu, F. He, Q. Wu, B. Han, D. Chen, J. Li, Z. Wang, J. Wang, J. Kai, Z. Xia, C.T. Liu, J. Mater. Sci. Technol. 69 (2021) 156-167.
DOI URL |
[32] |
V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, Npj Comput. Mater. 4 (2018) 29.
DOI URL |
[33] |
D.R. Cassar, A.C.P.L.F. de Carvalho, E.D. Zanotto, Acta Mater 159 (2018) 249-256.
DOI URL |
[34] |
M.S. Ozerdem, S. Kolukisa, Mater. Des. 30 (2009) 764-769.
DOI URL |
[35] |
L. Huber, R. Hadian, B. Grabowski, J. Neugebauer, Npj Comput. Mater. 4 (2018) 64.
DOI URL |
[36] | C.W. Rosenbrock, E.R. Homer, G. Csányi, G.L.W. Hart, Npj Comput.Mater. 3 (2017) 29. |
[37] |
X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L. Wang, C.J. Shang, J. Mater. Sci. Technol. 84 (2021) 49-58.
DOI URL |
[38] |
J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 68 (2021) 70-75.
DOI URL |
[39] |
B.D. Conduit, N.G. Jones, H.J. Stone, G.J. Conduit, Mater. Des. 131 (2017) 358-365.
DOI URL |
[40] |
K. Jin, H. Luo, Z. Wang, H. Wang, J. Tao, Mater. Des. 194 (2020) 108932.
DOI URL |
[41] | R. Tamura, T. Osada, K. Minagawa, T. Kohata, M. Hirosawa, K. Tsuda, K. Kawag- ishi, Mater.Des. 198 (2021) 109290. |
[42] |
B. Zhang, X.Q. Zheng, T.Y. Zhao, F.X. Hu, J.R. Sun, B.G. Shen, Chin. Phys. B 27 (2018) 67503.
DOI URL |
[43] |
T.O. Owolabi, K.O. Akande, S.O. Olatunji, A. Alqahtani, N. Aldhafferi, AIP Adv 6 (2016) 105009.
DOI URL |
[44] | H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), Advances in Neural Information Processing Sys- tem 9. Proceeding of the 1996 Conference, MIT Press, London, UK, 1997, pp. 155-161. |
[45] |
F. Guillou, H. Yibole, N.H. van Dijk, L. Zhang, V. Hardy, E. Brück, J. Alloys Compd. 617 (2014) 569-574.
DOI URL |
[46] | F. Guillou, H. Yibole, A. Kamantsev, G. Porcari, J. Cwik, V. Koledov, N.H. Van Dijk, E. Brück, IEEE Trans. Magn. 51 (2015) 51-54. |
[47] |
O. Hamt, O. Hascholu, O. Tegus, Solid State Phenom 288 (2019) 104-112.
DOI URL |
[48] |
F. Guillou, K. Ollefs, F. Wilhelm, A. Rogalev, A.N. Yaresko, H. Yibole, N.H. Van Dijk, E. Brück, Phys. Rev. B 92 (2015) 224427.
DOI URL |
[49] | X. Miao, L. Caron, Z. Gercsi, A. Daoud-Aladine, N. Van Dijk, K.G. Sandeman, E. Bruck, in: 2015 IEEE International Magnetic Conference INTERMAG 2015, 2, 2015, pp. 1-5. |
[50] |
D. Bessas, M. Maschek, H. Yibole, J.W. Lai, S.M. Souliou, I. Sergueev, A.I. Dugulan, N.H. Van DIjk, E. Brück, Phys. Rev. B 97 (2018) 1-7.
DOI URL |
[51] |
K.G. Sandeman, Scr. Mater. 67 (2012) 566-571.
DOI URL |
[52] |
V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78 (1997) 4494-4497.
DOI URL |
[53] |
N.H. Dung, Z.Q. Ou, L. Caron, L. Zhang, D.T.C. Thanh, G.A. De Wijs, R.A. De Groot, K.H.J. Buschow, E. Brück, Adv. Energy Mater. 1 (2011) 1215-1219.
DOI URL |
[54] |
A. Rowe, A. Tura, Int. J. Refrig. 29 (2006) 1286-1293.
DOI URL |
[1] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[2] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
[3] | Chunguang Shen, Chenchong Wang, Pedro E.J.Rivera-Díaz-del-Castillo, Dake Xu, Qian Zhang, Chi Zhang, Wei Xu. Discovery of marageing steels: machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87(0): 258-268. |
[4] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[5] | X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L Wang, C.J. Shang. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior [J]. J. Mater. Sci. Technol., 2021, 84(0): 49-58. |
[6] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[7] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[8] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
[9] | Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning [J]. J. Mater. Sci. Technol., 2021, 92(0): 31-39. |
[10] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
[11] | Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57(0): 113-122. |
[12] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[13] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
[14] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[15] | Wei Hu, Zhongwei Ma, Shude Ji, Qi Song, Mingfei Chen, Wenhui Jiang. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. J. Mater. Sci. Technol., 2020, 53(0): 41-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||